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1 Introduction

In this paper, we solve a folklore conjecture ! on Fano manifolds without non-
trivial holomorphic vector fields. The main technical ingredient is a conic version
of Cheeger-Colding-Tian’s theory on compactness of Kéahler-Einstein manifolds.
This enables us to prove the partial C%-estimate for conic Kihler-Einstein met-
rics.

A Fano manifold is a projective manifold with positive first Chern class
c1(M). Its holomorphic fields form a Lie algebra n(M). The folklore conjecture
states: If n(M) = {0}, then M admits a Kdhler-Einstein metric if and only
if M is K-stable with respect to the anti-canonical bundle K];[l, Its necessary
part was established in [Ti97]. The following gives the sufficient part of this
conjecture.

*Supported partially by a NSF grant
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Theorem 1.1. Let M be a Fano manifold canonically polarized by the anti-
canonical bundle KA*/[l. If M is K-stable, then it admits a Kdahler-Einstein met-
Tic.

An older approach for proving this theorem is to solve the following complex
Monge-Ampere equations by the continuity method:

(w4 V—=19dp)" = et w+vV/=100¢ > 0, (1.1)

where w is a given Kéhler metric with its K&hler class [w] = 27¢i (M) and h is
uniquely determined by

Ric(w) —w = v/~100h, / (e" —1)w" = 0.
M

Let I be the set of ¢ for which (1.1) is solvable. Then we have known: (1) By
the well-known Calabi-Yau theorem, I is non-empty; (2) In 1983, Aubin proved
that I is open [Au83]; (3) If we can have an a priori C%-estimate for the solutions
of (1.1), then I is closed and consequently, there is a Kéhler-Einstein metric on
M.

However, the C%-estimate does not hold in general since there are many
Fano manifolds which do not admit any Kéhler-Einstein metrics. The existence
of Kéahler-Einstein metrics required certain geometric stability on the underly-
ing Fano manifolds. In early 90’s, I proposed a program towards establishing
the existence of Kéahler-Einstein metrics. The key technical ingredient of this
program is a conjectured partial C%-estimate. If we can affirm this conjecture
for the solutions of (1.1), then we can use the K-stability to derive the a prior
C%-estimate and the Kihler-Einstein metric. The K-stability was first intro-
duced in [Ti97] as a test for the properness of the K-energy restricted to a finite
dimensional family of K&hler metrics induced by a fixed embedding by pluri-
anti-canonical sections.?2 However, such a conjecture on partial C%-estimates is
still open except for Kahler-Einstein metrics.

In [Do10], in his approach to solving the above folklore conjecture through
the b-stability, Donaldson suggested a continuity method by deforming through
conic Kahler-Einstein metrics. Those are metrics with cone angle along a divisor.
For simplicity, here we consider only the case of smooth divisors.

Let M be a compact Kahler manifold and D C M be a smooth divisor. A
conic Kéhler metric on M with angle 278 (0 < 8 < 1) along D is a Kéhler
metric on M\D that is asymptotically equivalent along D to the model conic
metric

dz N dz "

1 1 _

wo,p = v—1 W + E de /\de s
=2

where 21, 29, - -, z,, are holomorphic coordinates such that D = {z; = 0} locally.
Each conic K&hler metric can be given by its Kéhler form w which represents

2The K-stability was reformulated in more algebraic ways (see [Do02], [Pal2] and [Ti13]).



a cohomology class [w] in H(M,C) N H?(M,R), referred as the Kihler class.
A conic Kahler-Einstein metric is a conic Kéhler metric which is also Einstein
outside conic points.

In this paper, we only need to consider the following conic Kahler-Einstein
metrics: Let M be a Fano manifold and D be a smooth divisor which represents
the Poincaré dual of Ac;(M). We call w a conic Kéhler-Einstein with cone angle
27B along D if it has 2meq (M) as its Kéhler class and satisfies

Ric(w) = pw + 2n(1— B) [D). (1.2)

Here the equation on M is in the sense of currents, while it is classical outside
D. We will require p > 0 which is equivalent to (1 — )X\ < 1. As in the
smooth case, each conic Kéahler metric w with [w] = 27ey (M) is the curvature
of a Hermitian metric || - || on the anti-canonical bundle K;;'. The difference is
that the Hermitian metric here is not smooth, but it is Holder continuous.

Donaldson’s continuity method was originally proposed as follows: Assume
that A = 1, i.e., D be a smooth anti-canonical divisor. It follows from [TY90]
that there is a complete Calabi-Yau metric on M\D. It was conjectured that
this complete metric is the limit of Kéhler-Einstein metrics with cone angle
278 +— 0. If this is true, then the set F of 8 € (0,1] such that there is a conic
Kéhler metric satisfying (1.2) is non-empty. It is proved in [Dol0] that F is
open. Then we are led to proving that E is closed.

A problem with Donaldson’s original approach arose because we do not
know if a Fano manifold M always has a smooth anti-canonical divisor D.
Possibly, there are Fano manifolds which do not admit smooth anti-canonical
divisors. At least, it seems to be a highly non-trivial problem whether or not
any Fano manifold admits a smooth anti-canonical divisor. Fortunately, Li and
Sun bypassed this problem. Inspired by [JMR11], they modified Donaldson’s
original approach by allowing A > 1. They observed that the main existence
theorem in [JMR11], coupled with an estimate on log-a invariants in [Bel3],
implies the existence of conic Kéhler-Einstein metrics with cone angle 275 so
long as p = 1 — (1 — B)A is sufficiently small. Now we define E to be set of
B € (1 —A711] such that there is a conic Kihler metric satisfying (1.2). Then
E is non-empty. It follows from [Dol0] that E is open. The difficult part is to
prove that F is closed.

The construction of Kahler-Einstein metrics with cone angle 273 can be
reduced to solving complex Monge-Ampere equations:

(wp + V=190p)" = et 1o wp, (1.3)

where wg is a suitable family of conic Kéhler metrics with [wg] = 27e; (M) and
cone angle 273 along D and hg is determined by

Ric(wp) = pws + 27(1 — B) [D] +V/~190hs and / (" —1wj = 0.
M

As shown in [JMR11], it is crucial for solving (1.3) to establish an a priori
C%-estimate for its solutions. Such a C®-estimate does not hold in general.



Therefore, following my program on the existence of Kéahler-Einstein metrics
through the Aubin’s continuity method, we can first establish a partial C°-
estimate and then use the K-stability to conclude the C%-estimate, consequently,
the existence of Kéhler-Einstein metrics on Fano manifolds which are K-stable.

For any integer A > 0 and 3 > 0, let £(\, B) be the set of all triples (M, D, w),
where M is a Fano manifold, D is a smooth divisor whose Poincare dual is
Ac1(M) and w is a conic Kéhler-Einstein metric on M with cone angle 273
along D. For any w € (A, 8), choose a Holder continuous Hermitian metric h
with w as its curvature form, then we have an induced inner product < -,- > on
each HO(M, K;}') as follows:

<S8 >= y hY(S, 8" w",  VS,S8" € HY(M, K,}). (1.4)

Let {S;}o<i<n be any orthonormal basis of H°(M, K;/) with respect to this
induced inner product by A and w, then, as done in the smooth case, we can
introduce a function

puela) = Y IISillh(@)- (1.5)
=0

The following provides the partial C%-estimate for conic Kihler-Einstein
metrics. The estimate is needed in completing the proof of Theorem 1.1.

Theorem 1.2. For any fived X and By > 1 — \~1, there are uniform constants
cp = c(k,n,\,Bo) > 0 for k > 1 and ¢; — oo such that for any 8 > Py and
w € EN, B), we have for £ =L,

Puw = c¢ > 0. (1.6)

We expect that this theorem holds for more general conic Ké&hler metrics.
In fact, our method for proving the above theorem should be also applicable to
establishing the partial C%-estimate for conic Kihler-Einstein metrics in more
general cases.

A crucial tool in proving Theorem 1.2 is an extension of Cheeger-Colding-
Tian’s compactness theorem for Kéahler-Einstein metrics to the conic cases.

Theorem 1.3. Let M be a Fano manifold with a smooth pluri-anti-canonical
divisor D of K]\_j‘. Assume that w; be a sequence of conic Kahler-FEinstein
metrics with cone angle 2wB; along D satisfying:

Ric(w;) = piw; + 27(1 — ;) [D], i = 1—(1—=8)A

where p; = 1 — (1 — B)A > 0. We further assume that im p; = poo > 0 and
(M,w;) converge to a length space (M, dso) in the Gromouv-Hausdorff topology.
Then there is a closed subset SU Do, of Moo, where S is of codimension at least
4 and Dy is the limit of D in the Gromov-Hausdorff topology, such that My,
is a smooth Kdhler manifold and do, is induced by a smooth Kahler-Einstein



metric oytside SUDy C Ms. Furthermore, (M,w;) converge to (Moo, wWoo)
outside S U Do, in the C™-topology.

Extra technical inputs are needed in order to establish such an extension.

The organization of this paper is as follows: In the next section, we prove an
approximation theorem which states any conic Kéhler-Einstein metric can be
approximated by smooth Kahler metrics with the same lower bound on Ricci
curvature. In section 3, we give an extension of my works with Cheeger-Colding
in [CCTO02] to conic Kdhler-Einstein manifolds. In section 4, we prove the
smooth convergence for conic Kéhler-Einstein metrics. In the smooth case, it
is based on a result of M. Anderson. However, the arguments do not apply to
the conic case. We have to introduce a new method. In Section 5, we prove
Theorem 1.2, i.e., the partial C%-estimate for conic Kéhler-Einstein metrics. In
Section 6, we prove Theorem 1.1. We provide two proofs. One is conceptually
better and works for more general cases, while the other is simpler and works for
the case of Kéhler-Einstein metrics on Fano manifolds. In Appendix 1, we give a
detailed proof for a technical lemma in Section 5, i.e., Lemma 5.8. In Appendix
2, for the readers’ convenience, we outline a proof of a previous theorem due to
B. Wang and myself. This theorem will be used in Section 3 and 4 when we
prove an extension of [CCT02] when the cone angles tend to 1.

The existence of Kahler-Einstein metrics on K-stable Fano manifold was first
mentioned in my talk during the conference ” Conformal and Kédhler Geometry”
held at THP in Paris from September 17 to September 21 of 2012. On Octo-
ber 25 of 2012, in my talk at the Blainefest held at Stony Brook University,
I outlined my proof of Theorem 1.1, particularly, I described how to extend
[CCTO02] to conic Kihler-Einstein manifolds?, including a sharp approximation
theorem for conic Kéhler-Einstein metrics by smooth metrics with Ricci curva-
ture bounded from below and key ingredient in proving the smooth convergence
when cone angles tend to 1. I mentioned that the partial C°-estimate in the
conic case can be proved by using the extension of Cheeger-Colding-Tian com-
pactness and the arguments from [DS14] and also [Ti13]. I also mentioned that
the K-stability is equivalent to the properness of the K-energy restricted to
the family of Bergmann type metrics and the partial C-estimate reduces the
required C%-estimate to this properness. On October 30 of 2012, X.X. Chen,
S. Donaldson and S. Sun posted on the arXiv a short note [CDS14] in which
they also announced a proof of Theorem 1.1 and gave an outline of the proof.
On November 20 of 2012, I posted on the arXiv the first version of this paper
which contains all necessary results for proving Theorem 1.1, and on January
28 of 2013, the second version of my paper which contains a proof of Theorem
1.1. After their announcement, Chen-Donaldson-Sun posted on the arXiv three
papers [CDS15, I, I1, III] on November 19 of 2012, December 19 of 2012 and
February 1 of 2013 in which they also presented a proof of Theorem 1.1.

3 Actually, we will prove (see Theorem 5.9) that M is a normal variety embedded in some
CPYN and S is a subvariety of complex codimension at least 2.

4My work with Cheeger and Colding [CCT02] is definitely needed in establishing the partial
CO-estimate which is crucial for proving Theorem 1.1.



In this new version, after feedbacks from referees and others, I improved the
presentation of this paper and provided additional details.

Acknowledgement: First I would like to thank my former advisor S. T.
Yau who brought me the problem of the existence of Kéhler-Einstein metrics
on Fano manifolds when I was the first-year graduate student in 80s. I would
like to thank my friends and collaborators J. Cheeger and T. Colding, their
foundational regularity theory on Einstein metrics and my joint work with them
on Kahler-Einstein metrics have played a crucial role in proving Theorem 1.1. 1
would also like to thank B. Wang, my former postdoctor and collaborator. My
joint work with him on almost Einstein metrics is very important in establishing
the main technical result in this paper. I would also like to thank Chi Li, J. Song
and Z.L. Zhang for many useful discussions in last few years. I am also grateful
to Weiyue Ding with whom I had a joint paper [DT92] on generalized Futaki
invariants. This paper played a very important role in my introducing the K-
stability in [Ti97]. I would also like to thank the referees for useful comments
on improving the presentation of this paper.

2 Smoothing conic Kahler-Einstein metrics

In this section, we address the question: Can one approzimate a conic Kdhler-
Einstein metrics by smooth Kdhler metrics with Ricci curvature bounded from
below? For the sake of this paper, we confine ourselves to the case of positive
scalar curvature. Our approach can be adapted to other cases where the scalar
curvature is non-positive. In fact, the proof is even simpler.

Let w be a conic Kédhler-Einstein metric on M with cone angle 275 along
D, where D is a smooth divisor whose Poincaré dual is equal to A¢y (M), in
particular, w satisfies (1.2) for p = 1 — (1 — 8)A > 0. For any smooth Kéhler
metric wy with [wg] = 2me; (M), we can write w = wg + v/—199¢ for some
smooth function ¢ on M\D. Note that ¢ is Holder continuous on M. Define
ho by

Ric(wy) — wo = V—1090 hy, / (eho — 1wy = 0.
M
Note that the first equation above is equivalent to
Ric(wy) = pwo + 2r(1 = B)[D] + v=109(ho — (1 - §) log||S|[5).

where S is a holomorphic section of K;;* defining D and || - ||o is a Hermitian
norm on K;f‘ with Awg as its curvature. For convenience, we assume that

sup||S]|o = 1.
M

If wg and hg are those in (1.3), then modulo a constant,

n

2 ws
hg = ho — (1 —=)log||S|[ — log o) - g,

0



where ws = wy + V/—1099Y5.
It follows from (1.2)

(wo + V=188 )" = ho—(1=A)loglISlI§+as—pe yn (2.1)

where ag is chosen according to

/ (eho—<1—6>log||su3+aﬂ _ 1) Wl = 0.
M

Clearly, ag is uniformly bounded so long as 8 > 5y > 0.
The Lagrangian Fy,, ,,(¢) of (2.1) is given by

1 1 1
Juo () — V/M<pwg — " log (V /M eho—(l—ﬁ)logl5|§+aﬁ—uwwg>’ (2.2)

where V = [}, wi and

n—1 .
1 1+ 1 — ) .
Jo = = V=10p Adpo Awi Aw i1, 2.3
o () V§0n+1 y A Op Awy Awg (2.3)

1=

where w, = wy + /199 . Note that F, ,, is well-defined for any continuous
function ¢.
Let us recall the following result

Theorem 2.1. If w = w,, is a conic Kdhler-Einstein with cone angle 273 along
D, then ¢ attains the minimum of the functional Fy,, , on the space KCg(M,wp)
which consists of all smooth functions ¢ on M\D such that wy, is a conic Kdhler
metric with angle 2m3 along D. In particular, ¥y, , is bounded from below.

One can find its proof in [Bol1] (also see [LS14]). An alternative proof may
be given by extending the arguments in [DT91] to conic Kahler metrics.

Corollary 2.2. If u < 1, then there are € > 0 and C. > 0, which may depend
on w and p, such that for any ¢ € Kg(M,wo), we have for any t € (0, u]®

Fwo,t(w) > eJuy(¥) — Ce. (2.4)

Proof. Tt follows from the arguments of using the log-a-invariant in [LS14] that
F, : satisfies (2.4) for ¢t > 0 sufficiently small. Let w = w,, be the conic Kéhler-
Einstein metric with angle 278 along D. Then ¢ satisfies (2.1). Since M does
not admit non-zero holomorphic fields®, it follows from [Do10] that (2.1) has a
solution ¢ when p is replaced by i1 = p+ 6 for 6 > sufficiently small. Hence,
by Theorem 2.1, F,; 5 is bounded from below. Then this corollary follows from
Proposition 1.7 in [LS14] 7

O

5The corresponding B¢ is defined by (1 —t) = (1 — B¢)\.

SEven if M does have non-trivial holomorphic fields, one can choose D such that there are
no holomorphic fields which are tangent to D. This is sufficient for rest of the proof.

"In [LS14], the reference metric wo may be slightly different from ours, however, the argu-
ments apply.



Now we consider the following equation:
(wo + V=100 )" = ehs—re wgs (2.5)
where
hs = ho — (1 — B)log(6 +|S|[5) + cs

for some constant cs5 determined by
/ (eho—u—m1og<a+||sn3)+cé _ 1) Wl = 0.
M

Clearly, cs is uniformly bounded. If s is a solution, then we get a smooth
Kahler metric

Its Ricci curvature is given by

. S(1—-pB)A VSAVS
o) = s 4 5t 0 0 D G isige

where VS denotes the covariant derivative of S with respect to the Hermitian
metric || - ||o. In particular, the Ricci curvature of w;s is greater than 1 whenever
B<landd >058

We will solve (2.5) for such ws’s and show that they converge to the conic
Kahler-Einstein metric w in a suitable sense.

To solve (2.5), we use the standard continuity method:

(wo + V=19 )" = ehs=te . (2.6)

Define I5 to be the set of t € [0, u] for which (2.6) is solvable. By the Calabi-Yau
theorem, 0 € I5.
We may assume p < 1, otherwise, we have nothing more to do.

Lemma 2.3. The interval Is5 is open.

Proof. If t € Iy and ¢ is a corresponding solution of (2.6), then the Ricci
curvature of the associated metric wy, is equal to

5(1— B)A
d + 11513

VSAVS

) wo + 001 =5) TR

twe + ((u —t)+
So Ric(wy,) > tw,. By the well-known Bochner identity, the first non-zero
eigenvalue of w,, is strictly bigger than ¢. It implies that the linearization A, +1
of (2.6) at ¢ is invertible, where A; is the Laplacian of w,. By the Implicit
Function Theorem, (2.6) is solvable for any ¢’ close to ¢, so I is open. O

8This observation is crucial in our approximating the conic Kéhler-Einstein metric w. This
and (2.5) first appeared in my lecture at SBU on October 25, 2012. Once we have this
observation on Ricci curvature, the arguments in establishing the existence of ws as in Theorem
2.5 and 2.6 below are identical to what I used in [Ti97].



Therefore, we only need to prove that I is closed. This is amount to a priori
estimates for any derivatives of the solutions of (2.6). As usual, by using known
techniques in deriving higher order estimates, we need to bound only J,,(¢)
for any solution ¢ of (2.6) (cf. [Ti97], [Ti00]). The following arguments are
identical to those for proving that the properness of F,, 1 implies the existence
of the Kéhler-Einstein metrics in Theorem 1.6 of [Ti97].

We introduce

1 1 1 - n
Fs:(p) = Juy(p) — v /Mww{} — 7 log (V /M ehs t“”w()). (2.7)

This is the Lagrangian of (2.6).

Lemma 2.4. There is a constant C' independent of t satisfying: For any smooth
family of vs (s € [0,t]) such that ¢ = @ and s solves (2.6) with parameter s,
we have

Fs:(p) < C.
Proof. First we observe
1 n
Fs5(ps) = Juo(ps) — v Ps W - (2.8)
M

So its derivative on s is given by

4 g (ps) = i/ (wo + V=109 )™

ds 5,s\Ps) = sV v Ps 0 Ps) -

Here we have used the fact
[ s+ 0ot VT80 = 0
M

This follows from differentiating (2.6) on s.
We will show that the derivative in (2.8) is bounded from above. Without
loss of the generality, we may assume that s > sq > 0. Then we have

Ric(wy,) = swy, = sow,,,

and consequently, the Sobolev constant of w_ is uniformly bounded. By the
standard Moser iteration, we have (cf. [Ti00])

1 _
—inf o, < — — / s (wo + V=100 )" + C".
M V M

Since infp; s < 0, we get

d _
I Fs.s(ps) < s Lo,

The lemma follows from integration along s. O



Next we observe for any ¢t <
hs = ho — (1= B)log(é + [|S][§) + 5 < ho — (1 — B:) log |IS|[§ + cs.

Hence, by Corollary 2.2, we have
cs—a
Fou(t)) > eduy(¥) = Ce = =2

Since both ¢; and ag are uniformly bounded, combined with Lemma 2.4, we
conclude that J,, () is uniformly bounded for any solution ¢ of (2.6).° Thus
we have proved

Theorem 2.5. For any 0 > 0, (2.5) has a unique smooth solution ps. Con-
sequently, we have a Kdhler metric ws = wg + v/ —100ps with Ricci curvature
greater than or equal to p.

Next we examine the limit of ws or s as § tends to 0. First we note
that for the conic Kahler-Einstein metric w with cone angle 275 along D given
above, there is a uniform constant ¢ = ¢(w) such that sup,, |¢s| < c¢. Using
Ric(ws) > pws and the standard computations, we have

Alogtry, (wo) > —atry, (wo),

where A is the Laplacian of ws and a is a positive upper bound of the bisectional
curvature of wy. If we put

u = logtry, (wo) — (a+1) s,
then it follows from the above
Au > e"~@te _pig 4+ 1).

Hence, we have
u< (n4c)(a+1),

this implies
Cilwo S ws,

where C' = (n+2c¢)(a + 1). Using the equation (2.6), we have
Clwy < ws < O (5481205 wy, (2.9)

where C’ is a constant depending only on a and wg. Since 8 > 0, the above
estimate on ws = wy + vV—1090 ps gives the uniform Holder continuity of ¢s.
Furthermore, using the Calabi estimate for the 3rd derivatives and the standard
regularity theory, we can prove (cf. [Ti00]): For any [ > 2 and a compact subset
K C M\D, there is a uniform constant Cj i such that

llesllerxy < Cuk. (2.10)

Then we can deduce from the above estimates:

9Here we also used the fact that J.,(¢) is automatically bounded for ¢ > 0 sufficiently
small.

10



Theorem 2.6. The smooth Kdahler metrics ws converge to w in the Gromouv-
Hausdorff topology on M and in the smooth topology outside D.

Proof. Tt suffices to prove the first statement: w;s converge to w in the Gromov-
Hausdorff topology. Since ws has Ricci curvature bounded from below by a
fixed g > 0, by the Gromov Compactness Theorem, any sequence of (M,ws)
has a subsequence converging to a length space (M, d) in the Gromov-Hausdorff
topology. We only need to prove that any such a limit (M,d) coincides with
(M,w). Without loss of generality, we may assume that (M,ws) converge to
(M,d) in the Gromov-Hausdorff topology. By the estimates on derivatives in
(2.10), M contains an open subset U which can be identified with M\ D, more-
over, this identification ¢ : M\D U is an isometry between (M\D,w|yn\p)
and (U,d|y). On the other hand, since w is a conic metric with angle 278 < 27
along D, one can easily show by standard arguments that M M is the metric
completion of M\ D with respect to w. Then it follows from (2.9) that ¢ extends
to a Lipschtz map from (M,w) onto (M,d), still denoted by «. In fact, the
Lipschtz constant is 1.

We claim that ¢ is an isometry. This is equivalent to the following: For any
p and ¢ in M\D,

dw(p,q) = d(u(p),(q)).

It also follows from (2.9) that D = (D) has Hausdorff measure 0 and is the
Gromov-Hausdorff limit of D under the convergence of (M,ws) to (M,d). To
prove the above claim, we only need to prove: For any p,q € M\D, there is a
minimizing geodesic v C M\D joining p to g. Its proof is based on a relative
volume comparison estimate due to Gromov ([Gr97], p 523, (B)). 1 We will
prove it by contradiction. If no such a geodesic joins p to g, then, observing

that M\ D is geodesically convex with respect to w, we have

d(p,q) < du(p,q),

where p = ¢(p) and ¢ = ¢(q). Then there is a r > 0 satisfying:

q=1
(1) Br(p,d) N D = 0 and B,.(7,d) N D = §, where B,(-,d) denotes a geodesic
ball in (M, d);
(2) d(z,9) < du(2,y), where & = u(z) € B,(p,d) and § = 1(y) € B,(q,d).
It follows from (1) and (2) that any minimizing geodesic v from z to y
intersects with D. By choosing r sufficiently small, we may have

By (p,d) = u(B;(p,w)) and B(q,d) = u(B:(q,w)).

Choose a small tubular neighborhood 7" of D in M whose closure is disjoint from
both B, (p,w) and B,(g,w). It is easy to see that T' can be chosen to have the

10T am indebted to Jian Song for this reference. He seems to be the first of applying such
an estimate to studying the convergence problem in Kéhler geometry.

11



volume of 0T as small as we want. Now we choose ps, gs € M and neighborhood
Ts of D with respect to ws such that in the Gromov-Haudorff convergence,

li =P li =q lim T5 = «(T).

Jwops =p, limg =g, lmT=.T)

It follows
lim Vol(0Ts,ws) = Vol(0T,w).
6—0+

Also, for 0 sufficiently small, B,.(ps,ws), Br(gs,ws) and Ty are mutually disjoint.
Clearly, any minimizing geodesic v5 from any w € B,.(ps,ws) to z € B,(gs,ws)
intersects with T, so by Gromov’s estimate ([Gr97], p523, (B)),

er? < Vol(B,(gs,ws),ws) < CVol(0Ts,ws),

where ¢ depends only on $ and C depends only on 3, n, r. This leads to a
contradiction because Vol(0Ts,ws) converge to Vol(9T,w) which can be made
as small as we want. Thus, ¢ is an isometry and our theorem is proved.

O

3 An extension of Cheeger-Colding-Tian

In this section, we show a compactness theorem on conic Kahler-Einstein met-
rics. This theorem, coupled with the smooth convergence result in the next
section, extends a result of Cheeger-Colding-Tian [CCT02] on smooth Ké&hler-
Einstein metrics. In fact, our proof makes use of results in [CCT02] with injec-
tion of some new technical ingredients.

Let w; be a sequence of conic Kéahler-Einstein metrics with cone angle 27/3;
along D, so we have

Ric(wi) = H;Ww; —+ 271'(]. — 61) [D], Hi = 1-— (1 — BZ))‘

We assume that lim 8; = S > 1 — A71, it follows lim p; = oo > 0.
For each w;, we use Theorem 2.6 to get a smooth Kahler metric @; satisfying:

A1l. Tts Kahler class [@;] = 2mey (M);
A2. Tts Ricci curvature Ric(@;) > p; @;;
A3. The Gromov-Hausdorff distance dgp(w;, @;) is less that 1/i.

By the Gromov compactness theorem, a subsequence of (M, &;) converges
to a metric space (Meo, ds) in the Gromov-Hausdorff topology. For simplicity,
we may assume that (M, ;) converges to (M, ds). It follows from A3 above
that (M, w;) also converges to (M, ds) in the Gromov-Hausdorff topology.

Theorem 3.1. There is a closed subset S C My, of Hausdorff codimension at
least 2 such that M, \S is a smooth Kahler manifold and do, is induced by a
Kahler-FEinstein metric ws outside S, that is,

Ric(Woo) = fooWeo  ON M \S.
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If Bo < 1, then w; converges to we, in the C'*°-topology outside S. Moreover,
if Boo = 1, the set S is of codimension at least 4 and wo, extends to a smooth
Kahler metric on Mo \S.

This theorem is essentially due to Z.L. Zhang and myself [TZ12]. In this joint
work, we develop a regularity theory for conic Einstein metrics which generalizes
the work of Cheeger-Colding and Cheeger-Colding-Tian. Here, for completion
and convenience, we give an alternative proof by using the approximations from
last section.

Proof. Using the fact that (My, dso) is the Gromov-Hausdorff limit of (M, &;),
we can deduce from [CC95] the existence of tangent cones at every & € M.
More precisely, given any € M, for any r; — 0, by taking a subsequence if
necessary, (Mo, ri_Qdoo, x) converges to a tangent cone C, at x. Define R to be
the set of all points  in M, such that some tangent cone C, is isometric to
RQTL.

First we prove that R is open. If S, = 1, then lim y; = 1. Since

[0i] = 2w (M) and  Ric(@;) > u; @i,
we have (cf. Appendix 2)

[ Ric@) - aiap < 20-w) [ ot o (3.1)
M M

This means that (M,o;) form a sequence of almost Kéhler-Einstein metrics in
the sense of [TW12].1! Then it follows from Theorem 2 in [TW12] (also Theorem
8.1 in Appendix 2) that M, is smooth outside a closed subset S of codimension
at least 4 and d is induced by a smooth Kéhler-Einstein metric ws, on Mo \S.

Now assume that S < 1. Note that (M,w;) also converge to (Mu, doo) in
the Gromov-Hausdorff topology. Let {z;} be a sequence of points in M which
converge to € R during (M, w;)’s converging to (M, dwo). Since z € R, there
is a tangent cone C, of (Mo, ds) at 2 which is isometric to R?". It follows that
for any ¢ > 0, there is a r = r(¢) such that

Vol(B,(x,ds
VOB ) 5 o)~
where ¢(n) denotes the volume of the unit ball in R?". On the other hand, if

y; € D, then by the Bishop-Gromov volume comparison, for any 7 > 0, we have
Vol(B:(yi,w;))

7:2n

< c(n) Bi.

It also follows from the Bishop-Gromov volume comparison that there is an
N = N(e) such that for any small 7 € (0,7/N) and y; € Br(x;,w;), we have

_ Vol(B, (yi.:))
= Vol(B(x;,w;))
1To see why we call (M, &;) a sequence of almost Kihler-Einstein metrics, we first note that

if (M, ;) has a smooth limit, then such a limit must be a Kéhler-Einstein metric. However,
(3.1) indicates that (M,&;) converges to a Kihler-Einstein metric in the L!-sense.

1-— <l+e
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Now we claim that if 7 = r/N, we have Br(x;,w;) N D = (). If this claim
is false, say y; € Br(x;,w;) N D, then for ¢ sufficiently large, we can deduce
from the above and a result of Colding [C0o94] on the volume convergence in the
Gromov-Hausdorff topology

Vol(B,(zi,w;))

,,a2n

Vol(B,(yi,w;))

e(n) —2e < 20

<(+¢ < )1+ €) i
Then we get a contradiction if € is chosen sufficiently small. The claim is proved.

Since Br(x;,w;) is contained in the smooth part of (M,w;) and its volume
is sufficiently close to that of an Euclidean ball, the curvature of w; is uni-
formly bounded on the smaller ball Bsz/4(2i,w;) (cf. [An90]). It follows that
w; restricted to By/a(xi,w;) converge to a smooth Kéhler-Einstein metric on
Brja(7,do) and Brja(z,ds) C R. So R is open and do restricted to R is
induced by a smooth Kéahler-Einstein metric wqo.

The rest of the proof is standard in view of [CCT02].

Let S, (k=0,1,---,2n — 1) denote the subset of M., consisting of points
for which no tangent cone splits off a factor, R¥*1, isometrically. Clearly, Sy C
Sy C -+ C Sopo1- It is proved by Cheeger-Colding [CC95] that Sop,—1 = 0,
dimS; < kand § = So,,—2. Moreover, if S, = 1, it follows from [TW12] or
Appendix 2 that § = S2,,—4. Then we have proved this theorem. O

Using the same arguments in [CCT02], one can show:
Theorem 3.2. Let C, be a tangent cone of My, at x € S, then we have

C1. Fach C, is reqular outside a closed subcone S, of complex codimension at
least 1. Such a S; is the singular set of Cy;

C2. C, =CF x C.., in particular, Sog+1 = Sar. We will denote by o the vortex
Of CT7

C3. There is a natural Kdhler Ricci-flat metric g, whose Kdhler form w, is
V=100p% on C,\S., where p, denotes the distance function from o. Also g, is
a cone metric;

C4. For any x € Sap—o with C, = C"~! x Cl,, then Cl, is a 2-dimensional flat
cone of angle 2rf such that 0 < Boo < f < foo and (1 — ) = m(1 — ) for

some integer m > 1, where Boo depends only on Bog and c1(M)™.

Proof. C1, C2 and C3 follow directly from results in [CCT02]. 2 The proof
of C4 uses the slicing argument in [CCT02] (also see [Ch03]) for proving that
Son_a = 0 in the case of smooth Kihler-Einstein metrics. For the readers’
convenience, we adapt the arguments for a proof in our case.

Since (M,w;) converge to (My,ws), there are r; — 0 and z; € M such
that (M, ri_lwi,xi) converge to the cone C,. It follows from Theorem 2.37 in

12To prove that g, is Kihler-Ricci flat in C3, we use the fact that (Moo, doo) is also the
limit of conic Kahler-Einstein manifolds (M, w;).
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[CCT02] that there are ¢; — 0 and maps (®;, ;) : By o (2,77 w;) — C" I xRy
satisfying:

max{Lip(®;), Lip(u;)} c(n),
/ |V(z) — 2nB| dzndz < e,
|z|<1, zeCn—1

IN

where V(2) is the volume of ¥, = ®;!(2) Nu; *([0,1]) with respect to r; 2w;,.
These correspond to (2.38) and (2.40) in [CCTO02]. Actually, we first apply
Theorem 2.37 in [CCT02] to smooth approximations of (M,w;) produced in
Theorem 2.6 and then take the limit. Moreover, in view of the proof of Theorem
2.37 in [CCT02], the components of ®; and wu; are defined by solving Laplacian
equations, so they are smooth outside D. By slight modification if necessary,
we may also assume that ®; is smooth along D.

In the following, for simplicity, write ¢ = ¢ and (®,u) = (P;,u;). As
a consequence of the above estimates on ® and u, we can find a subset B, of
{]2] <1} c C*! with large measure such that for any z € B,, X, is transversal
to D with its boundary converging to {z} x S}; as ¢ — 0o, where S% denotes the
unit circle in C, and

V(2) — 2mB] < Ce,

where C'is a uniform constant. Now KZ;[l restricts to a line bundle on X, with
am induced Hermitian metric h, by r; 2w; whose curvature € is equal to

Ric(r2w;) = pw; + 2r(1 — 3;) 5 [D],
where ¢, : ¥, — M denotes the embedding. Let m : S¥, — X, be the unit
circle bundle of this Hermitian line bundle, then

™0 =df on ¥, \D,

where 6 denotes the connection 1-form of h, which has residue equal to & (1—4;)
at each intersection of ¥, with D.!3 Since z is a regular value, the normal bundle
of X, is trivial, so the Euler number of K ;41 restricted to X, is the same as that
of TY,. It follows that there is a section v of K ]\}1 over X, with non-degenerate
zeroes outside D N Y, and which is equal to outward unit normal of 93, along
the boundary of ¥,. Note that

X(E.) = Y #1<1
v(p)=0

Put
v

ol
Hence, by the Stokes Theorem, we have

Q= / s*0 — lim s*0
/z o) Z 6—0 BB(;(p,TJQwi)

p€D or v(p)=0

s X A\(DUvH0)) = S,

13The sign depends on whether or not ¥, intersects with D positively.
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It follows -
(x(22) = B) = m(1 - Bx) = o(1),

where m = m(z) is the algebraic intersection number of ¥, with D and o(1)
denotes a quantity which converges to 0 as ¢ goes to co. If m is non-negative,
then we see 1 — 3 = m(1 — ) by taking i sufficiently large.

Now we claim that there are regular values z’'s of ® such that m(z) > 0.
This follows from the co-area formula:'4

/ [do|w) ! = / m(z)dz A dz.
Be(wi,rf2wi)ﬂD zeCn—1

The left side is non-negative, so we can find a subset of regular values in C*~!
of positive measure such that m(z) > 0. Our claim is proved.

The bounds on § follow from the Bishop-Gromov volume comparison. Note
that B+ depends only on the diameter and volume of M,,. Hence, there are
only finitely many of such 3 if S, < oco. O

Next we state another corollary of Theorem 2.6:

Lemma 3.3. There is a uniform bound on the Sobolev constants of (M,w;),
that is, there is a constant C' such that for any f € C*(M,R),

([

Proof. By Theorem 2.6, for any i, there is a sequence of smooth Kéhler metrics
wj,s converging to w; in the Gromov-Hausdorff topology and Ric(w; s5) > ;i wis.
Since the volume of w; s is fixed, it is well-known that (3.2) holds uniformly for
wis. Then the lemma follows by taking 6 — 0 and applying results in [Ch99]
and [HK95] to our special case. Actually, we can give a direct proof in our case.
Let us indicate how to do it. First, by (2.9), w; and w; s are all bounded from
below by a smooth metric on M, so |V f|,, and |V fl|., ; are uniformly bounded
from above by a constant which may depend on f. Secondly, as § goes to 0, w; 5
converge to w; in the smooth topology outside D. Then (3.2) follows easily. O

n—1

T%w)"§0/umi+uﬂw. (3.2)
M

4 Smooth convergence

We will adopt the notations from last section, e.g., w; is a conic Kéhler-Einstein
metric on M with angle 275; along D as before. The main result of this section
is to show that w; converge to ws outside a close subset of codimension at
least 2. This is crucial for our establishing the partial C%-estimate for conic
Kahler-Einstein metrics as well as finishing the proof Theorem 1.1. This is
related to the limit of D when (M,w;) converges to (My,ds). If Bo < 1,
the limit of D is in the singular set S of M, since w; converge to w, in the

14In Appendix 1, in our case of conic Kahler-Einstein metrics, we give an alternative way
of constructing a slice ¥, whose m(z) is automatically positive.
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C>°-topology outside S as shown in Theorem 3.1. The difficulty lies in the case
when S = 1. By [TW12] or Theorem 8.1 in Appendix 2, S is a closed subset
of codimension at least 4, equivalently, M, is actually smooth outside a closed
subset of codimension 4. Related results for smooth Kéahler-Einstein metrics
were proved before (cf. [CCTO02], [Ch03]). However, a priori, it is not even clear
if w; converge to w in a stronger topology on any open subset of Mo, \S. The
original arguments in [CCT02] rely on an argument in [An90] which works only
for smooth metrics. It fails for conic Kahler-Einstein metrics. So we need to
have a new approach. In the course of proving our main result in this section,
we also exam the limit of D in M.

First we describe a general and important construction: Given any conic
metric w with cone angle 273 along D, its determinant gives a Hermitian metric
H on K]\_/[l outside D. For simplicity, we will also denote by H the induced
Hermitian metric on K;f for any ¢ > 0. However, H is singular along D, more

precisely, if S is a defining section of D, then it is of the order ||S]| \62(17@ along

D, where || - || is a fixed Hermitian norm. This implies that H (S, S)%FI is
bounded along D, where n = 1— (1 — ). On the other hand, there is a unique
h such that as currents,

Ric(w) = pw + 27(1 — B)[D] + V/—100h,

where h is normalized by

/M (e"—1) w™ = 0.

Note that h is Holder continuous. Put
Hw('a ) = 6% I:[(Sa S)% Er(a ')a
then as a current, the curvature of H,, is equal to

1-8

Ric(w) — 0 V—100log H(S, S) —

—Vﬂ_l 90h = w.

Also we normalize H,, by scaling S such that

H,(S,S)w" = / e H(S,S)w w" = 1.

M M

Such a Hermitian metric H,, is uniquely determined by w and D and called the
associated Hermitian metric of w. If w is conic K&ahler-Einstein, its associated
metric H,, is determined by the volume form w”, e.g., in local holomorphic
coordinates zq,--- , z,, write

n B 9 9 A
w=+v-—1 Z 95dza NdZy and S = f <821/\-~-/\> ,

z
a,b=1 9 n
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then H,, is represented by
1,,20-8)
det(gap) ™ [fI 7.
In particular, it implies that for any o € H°(M, K;f), H,(o,0) is bounded
along D.
Now we recall some identities for pluri-anti-canonical sections.

Lemma 4.1. Let w; be as above and H; be the associated Hermitian metric on
Ky Then for any o € H(M, K;/'), we have (in the sense of distribution)

Aillollf = [IVallf = neloll? (4.1)

and
Ail[Vallf = [IV2ollf = (n+2)¢ — )|Vl (4.2)
where || - ||; denotes the Hermitian norm on K} induced by H; = H,,, V

denotes the covariant derivative of H; and A; denotes the Laplacian of w;.

Proof. On M\D, both (4.1) and (4.2) were already derived in [Ti91] by direct
computations. Since ||o||? is bounded, (4.1) holds on M.

By a direct computation in local coordinates, one can also show that ||Va||?
is bounded along D, so (4.2) also holds. O

Applying the standard Moser iteration to (4.1) and (4.2) and using Lemma
3.3, we obtain

Corollary 4.2. There is a uniform constant C such that for any o € H'(M, KJT/),
we have

sup (loll + €4 IVoll) < ot ([ folzer)”. @
M M

If o, is a sequence in H°(M, K ;) satisfying:

/ o Zwp = 1,
M

then by Corollary 4.2, ||o;||; and their derivative are uniformly bounded. Tt
implies that ||o;||; are uniformly continuous. Hence, by taking a subsequence if
necessary, we may assume ||o;||; converge to a Lipschtz function F, as ¢ tends

to oo, moreover, we have
2 n
/ Fowh = 1.
MOO

In particular, F, is non-zero. Our strategy is to prove that w; converge to we,
on F_'(0)US and F,, is equal to the square norm of a holomorphic section on
M.

Now we assume o; = a;5, where a; are constants and S is a defining section
of D. Then ||lo;||;(x) = 01if and only if x € D . If F(z) # 0 for some
x € M, \S, then for a sufficiently small r > 0, we have

2F(y) > Foo(z) > 0, Vy € B(2,wx0)-
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This is because F, is continuous. We can also have
B.(x,weo) C M \S.

Since ||o;||; converge to Fi, uniformly, for i sufficiently large, ||o;||; > 0 on those
geodesic balls B, (z;,w;) of (M, w;) which converge to B, (z,ws ) in the Gromov-
Hausdorff topology. It follows that B, (z;,w;) C M\D, that is, each B,(z;,w;)
lies in the smooth part of (M,w;). On the other hand, since x is a smooth point
of M, by choosing smaller 7, we can make the volume of B,.(x;,w;) sufficiently
close to that of corresponding Euclidean ball, then as one argued in [CCT02]
by using a result of [An90], w; restricted to B,(z;,w;) converge to we, on any
compact subset of B, (x,ws) in the C*-topology. Thus, w; converge to wy, in
the C*°-topology on the non-empty open subset M., \F_'(0) US.

Next we want to show that F_!(0) does not contain any open subset,'®
or equivalently, M.,\F'(0) is an open-dense subset in M.,. We prove it by
contradiction. If it is false, say U C F.o'(0) is open, using the fact that ||o;|];
is uniformly bounded from above, we have

1
lim [ Jog(; + oDt = ~oc. (1.4)
i—oo Jar 7

By a direct computation, we have

Wwj iVo; NVo; > 0.

~ 1
4 /—1801oa(= 112) =
wi + v=190108(G +lloills) = TE i 2

It implies

1
Aitog(5 + llol|?) = .

Using the Sobolev inequality in Lemma 3.3 and the Moser iteration, we can
deduce

1 1
sup log(> + [loul?) < € (1 + [ roslh+ ||az-|?>w?), (4.5)
M (3 M (3
where C' is a uniform constant. By (4.4),
. 1 )
lim sup log(> + [[o:][?) = —oc.
71— 00 M 1

However, since the L?-norm of ||o;||; is equal to 1, there is a constant ¢ inde-
pendent of ¢ such that

1
sup log(= + [|3[[f) > —c. (4.6)
M 1

This leads to a contradiction. Therefore, M\ F'(0) is dense.

15The same arguments actually show that it does not contain any subset of positive measure.
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By our definition of the metric H; associated to w;, in local holomorphic
coordinates 21, - , 2z, away from D, we have

®=

loill? = ((det(gup))* [wl?)

where

9 9 RN n
o, = w </\---/\> and w; = v—1 Z 9ub A2a N dZp .

821 Gzn Pt

Since w; converge to ws, in the C*°-topology outside F._1(0) US, it follows that
o; converge to a holomorphic section o and ||-||; converge to a Hermitian norm
| [loo on M\EZY(0) US.2® Note that || - ||oo is the Hermitian norm on KA_/I;
associated to we. Clearly, Foo = ||00o||0o, In particular, oo, is bounded. One
can show that it extends to a holomorphic section of KJ;I)O‘O on the regular part
Mo \S. For the reader’s convenience, we show how to do such an extension. This
extension is a local problem, so it suffices to extend o, near each x € My, \S.
First we observe that (4.5) and (4.6) imply

/ log Foo w?, > —C' > —o0, (4.7)
Moo

where C’ is a uniform constant. Let (U;z,---,2,) be a local holomorphic
coordinates chart of M., near x, then as above, on U\F_!(0), we write

9 9 A

Since Fs = ||0c0]|oos by putting we, = 0 on U N F_1(0), we get a continuous
function on U which is holomorphic outside F_'(0). Moreover, we have

[woo| < C Fao. (4.8)

Let n : R+ [0,1] be a cut-off function satistying: n(t) = 0if ¢t < 1, n(t) = 1 if
t > 2 and |n'| < 1. Then for any smooth function ¢ with closure of its support
contained in U, we have

/ Woo Op W = lim/ Woo N(€ 1 Foo) Dp . (4.9)
U €0 Jir

Since F is a Lipschtz function, by using (4.8) and integration by parts, the
right-handed side of (4.9) is bounded by a constant multiple of

lim wh = 0.

€0 JUn{Fo<2e}

16The singular set S may overlap with F5!(0) along a subset.
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Therefore, in the sense of distribution, we have
Owse =0 in U.

Thus by the standard elliptic theory, being continuous, we, extends to be a
holomorphic function on U, consequently, o, extends to be a holomorphic
section of Kz\_/[i, and Foo = ||0co||co outside S.

Next we exam the limit of D under the convergence of (M, w;). Since ||o;||; =
0 on D, the limit of D must lie in D, where D, denotes the zero set of F,,
We claim that the limit of D coincides with D,. If this is not true, there
are © € Do, and r > 0 such that Ba,.(2,dw) N Dy is disjoint from the limit
of D. Choose z; € M going to = as (M,w;) converge to (Ms,d~ ), then for
i sufficiently large, B, (x;,w;) is disjoint from D, so lies in the smooth part
of (M,w;). The regularity theory in [CCTO02] implies that S N B,(z,d) is
of complex codimension at least 2 and near a generic point y € B, (x,ds) N
Dy, 0 is holomorphic and defines D, moreover, the convergence of (M, w;)
0 (Mw,dw) is in C*®-topology and o; converge to o, near y , so o; must
vanish somewhere in B,.(z;,w;), a contradiction. This shows that the limit of
D coincides with D,

If 8o = 1, the singular set S is of complex dimension at least 2 and o, €
H°(M, K];[i‘c ) which consists of all holomorphic sections of KA_/[: on Mo \S.
Then Dy is simply the divisor {0 = 0}.

Summarizing the above discussions, we have

Theorem 4.3. Let (Moo, woo), S ete. be as in Theorem 3.1. Then (M,w;)
converge to (Muo,wso) in the C™-topology outside a closed subset S U Dy,
where S (possibly empty) is of codimension at least 4, and D converges to D,
in the Gromov-Hausdorff topology. If Bos < 1, S = SUDy. If Boe = 1,
S = S and Dy, is a divisor of Ky A 17

Remark 4.4. As an easy consequence of this theorem, we can also get the
smooth convergence to tangent cones: Let C, be a tangent cone which is the limit
of (Mo, 7; 7 2Weo, ), then (Moo, 2o, x) converge to C, in the C'*®-topology
outside its singular set S,.

This can be seen as follows: If Bso < 1, this is already clear in Section 3, or
more precisely, this follows from the proof of Theorem 3.1. If Boo = 1, for any
y € C,\S.*® and r sufficiently small, we have

Vol(B,(y: gz)) = (c(n) —e) 12",
where € is chosen to be small so that for any g € S,
Vol(B, (7, wso)) < (c(n) — 2¢) "
17Tt follows from the partial CC-estimate in the next section that the same holds even if

Boo < 1.
8By [TW12] or Appendix 2, S, is of complex codimension at least 2.
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Let y; € My, with limy; =y, then by the same arguments as those in the proof
of Theorem 3.1, for some N = N(¢) and 7 = r/N, the ball Br(y;,r; *wso) lies
entirely in the reqular part of My, then the smooth convergence follows from a
result of Anderson [An90].

5 Partial C’-estimate

In this section, we prove Theorem 1.2. By our results on compactness of conic
Kahler-Einstein metrics in last two sections, we need to prove only the following:

Theorem 5.1. Let M be a Fano manifold M and D be a smooth divisor whose
Poincaré dual is Acp(M). Let w; be a sequence of conic Kahler-Einstein metrics
on M with cone angle 273; along D satisfying:

limpB; = foo >0 and 1—(1—PBs)) > 0.

We also assume that (M,w;) converge to a (possibly singular) conic Kdhler-
Einstein manifold (M, ws) as described in Theorem 4.3. Then there are uni-
form constants ¢, = c(k,n,\,Boo) > 0 for k > 1 and ¢, — oo such that for
= ecw

Puie = ¢ > 0. (5.1)

For the readers’ convenience, we recall the definition of p,, ; as well as a few
facts.
Let H; be the Hermitian metric on Kl;jl associated to w;, then we have an

induced inner product < -,- >; on each H°(M, K) as follows:
<S8, 8 > = / HY(S,8")wl, VS,S8" e HY(M, K,}).
M

Let {Sa}o<a<n be any orthonormal basis of HO(M, K ;) with respect to the
inner product < -, >;, then we have

N
Puoi Z i(Sas Sa) (), (5.2)

We have shown in last section that the defining sections o; of D normalized

with respect to H; converge to a holomorphic section o of K, X on either

Moo \S for Boo < 1 or Moo\S U Dy for o = 1, satisfying: In any local coordi-
nates z1,--- , 2, outside S, we have

(det(g,5))" [w]?* < oo (5.3)
where
6 a ®)\ n
— - e R = —1 b Zp -
Ooo w <821 ARRRWA 8zn) and  wWeo vV aél 95 2o N\ dZy
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Define a Hermitian metric Ho, on K]T/[loo on M \S by
~ ﬂ ~
Hy = Hoo(0o0,000) * Hoo. (5.4)
Here FIOO denotes the Hermitian metric induced by the determinant of ws,. The
following can be easily proved.

Lemma 5.2. The Hermitian metrics H; converge to Hoo on My \S in the
C*>-topology. Moreover, we have

Hoo(000,000) < 00 and / Hoo (000, 000) w3 = 1.
M,

By a holomorphic section of K;Ii on My (¢ > 0), we mean a holomor-
phic section o of Kfi on M \S with Hy(0,0) bounded. We denote by

HO(My, Ky ") the space of all holomorphic sections of K/ Y on M. If My
is smooth outside a closed subset of codimension 4, then it commdes with the
definition we used in literature.

Applying Corollary 4.2 and standard arguments, we can prove:

Lemma 5.3. For any fived £ > 0, if {r;} is any sequence of H°(M, K;V[Z)
satisfying:

Hi(TiaTi) w;n = 1)
M

then a subsequence of T; converges to a section Too in HO(M, KJ\_/ ).

Furthermore, since p,, ¢ are uniformly continuous, it follows from Lemma
5.3 that a subsequence of them converges to a continuous function on M,.'?

We note that if (5.1) holds for £, so does for ¢¥ for any k > 2. This can be
easily verified by using the definition of p,, ¢ and Corollary 4.2. Therefore, in
order to prove Theorem 5.1, we only need to show that there is an ¢ such that,

inf lélf P () > 0. (5.5)
Next we claim that (5.5) follows from the following: For any x € M, there
is an ¢ = £, and a sequence x; € M such that limz; = x and

inf p,,; ¢(x;) > 0. (5.6)

For the readers’ convenience, we show how to derive (5.5) from this claim: Given
any © € M, by using the estimate in Corollary 4.2 and (5.6), there is a r = 7,
such that

inf inf  py, ¢ > 0.

i Br(zi,w;)

Since M, is compact, there are finitely many x = x,, { = ¢, and r = r, as
above (a = 1,---,k) such that the balls B, (24,ws) cover My,. Then (5.5)
holds for £ = ¢ - - - €. Hence, it suffices to prove (5.6).

191n fact, the limit is equal to Puoy ¢ as shown in the end of this section.
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The following lemma provides the L2-estimate for d-operator on (M, w;). Tt

can be proved by using the smooth approximations of w; constructed in Theorem
2.6.

Lemma 5.4. For any ¢ > 0, if ( is a (0,1)-form with values in KA_/ and 9 =0,
there is a smooth section U of K;f such that 09 = ¢ and

1
11 wr < o [ IR
/M C+p S

where || - ||; denotes the norm induced by H; and w;.

We have seen that for any r; — 0, by taking a subsequence if necessary, we
have a tangent cone C, of (M, wso) at , which is the limit of (M, rj_2woo, x)
in the Gromov-Hausdorff topology, satisfying:

T;. Each C, is regular outside a closed subcone S, of complex codimension at
least 1. Such a &, is the singular set of Cy;

Ty. There is an natural Kéhler Ricci-flat metric g, on C.\S, which is also a
cone metric. Its Kihler form w, is equal to v/—19dp2 on the regular part of
C., where p, denotes the distance function from the vertex of C,, denoted by o.

We will denote by L, the trivial bundle C, x C over C, equipped with the
Hermitian metric e~ | - |2. The curvature of this Hermitian metric is given by
W

Recall that S (k = 0,1,---,2n — 1) consists of points in My, for which
no tangent cone splits off a factor, R¥*1, isometrically. Then it was shown in
[CC95]

Son1=0, SgC---CS8Ssp_o=38 and dimS; <k.

The following lemma is a consequence of Theorem 3.2 and [CCT02].

Lemma 5.5. We have For any x € Sap—2\San—4, we have

(1) Sopy1 = Sop fork=0,--- ,n—1 and if v € Sop_2, then C, = C" 1 x C,
and g s a product of the Fuclidean metric on C" ! with a flat conic metric on
C. of angle 27j3;

(2) If x € Sap—y and S, is of complex codimension 1, then there is a subcone
S, C 8, of complex codimension at least 2 such that a tangent cone of (Cy, gs)
at y is isometric to a product of the Euclidean metric on C*~1 with a flat conic
metric on C.. of angle 273;

(3) There is a Bos depending only on the diameter and volume of (Ma,wso)
such that Be < B < Boo for B in (1) and (2);

(4) If Boo < 1, then (1 — B) = m(1 — Bso) for B in (1) and (2), in particular,

there are only finitely many such B’s.

Proof. (1) and (2) follow from Theorem 9.1 in [CCT02]. (3) follows from the
Bishop-Gromov volume comparison. (4) follows from Theorem 3.2, C4. O
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Remark 5.6. Using a local version of the partial CP-estimate (cf. Appendiz
1), one can actually prove that S, is closed. But we do not need this property
in proving the partial CO-estimate, and consequently, Theorem 1.1.

Now we fix some notations: For any € > 0, we put

V(zse) = {y € Culy € Be-1(0,92) \ Be(0,92), d(y,Sz) > €},

where Bg(0, g;) denotes the geodesic ball of (C;, g,) centered at the vertex and
with radius R.
If C, has isolated singularity, then S, = {o} and

V(zie) = {y € Caly € Be-1(0,92) \ Be(0,92) }-
“2Wee, ) CON-

Let {r;} be any sequence such that rj_Q are integers and (Moo, 7;
verges to (Cy, gz, 0). By [CCT02], for any ¢ > 0 and 6 > 0, we can have a
Jo = jo(e, ) such that for each j > jo, there is a diffeomorphisms ¢ : V(z; §) =
Mo \S, where § is the singular set of M, satisfying:

(1) d(x,¢(V(z;€))) < 10er and ¢(V(z;€)) C B(iye—1)r(z), where 7 = r; and
Bgr(z) denotes the geodesic ball of (My,ws) with radius R and center at x;

(2) If goo is the Kéhler metric with the Kéahler form ws, on M \S, then

Ir=2¢*goo — Gallco(vzg)) < 6, (5.7)
where the norm is defined in terms of the metric g,.

Lemma 5.7. Given ¢ > 0 and any sufficiently small § > 0, there are a suffi-
ciently large £ = =2, a diffeomorphism ¢ : V (x; 2) = Mo \S with properties
(1) and (2) above, and an isomorphism v from the trivial bundle C, x C onto
K];[io over V(x;€) commuting with ¢ satisfying:

pI* = e and  |IV¥lcav ) < 9, (5-8)

where || - || denotes the induced norm on K];[io by weo, V denotes the covariant

derivative with respect to the metrics || - ||? and e~ P> |- 2.

Proof. The arguments are pretty standard, so we just give an outlined proof.

Let {r;} be as above such that (Momr;Zwomm) converges t0 (Cg, gz, 0).

Assume € < e determined later. Then there are diffeomorphisms ¢; : V(; GZ,) —
Mo \S satistying:

d(z,¢;(V(z;€))) < 10€'r;,  ¢;(V(xs€)) C B(iqetyr, ()

and
. —2 % =
i (757265000 = gelloo(viagy) = 0

We cover V(z;€’) by finitely many geodesic balls Bs,_ (yo) (1 < o < N)
satisfying:
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(i) The closure of each Bas_ (o) is strongly convex and contained in C,\S,;.

(ii) The half balls B, /2(y«) are mutually disjoint;

(iii) 84 > Ve d(Ya,Ss), where v, is a constant depending only on V(x,€).20
We will first set £ = ¢; = r]z and ¢ = ¢; when j is sufficiently large and
construct .
First we construct &a over each Bag, (yo). For any y € Bas, (ya), let vy C
Bss,, (ya) be the unique minimizing geodesic from y, to y. We define Yo as
follows: First we define 1o (1) € L|4(y, ) such that

~ 2
[Pa(D)|* = e7P=e),

where L = K;fx. Next, for any y € U,, where U, = Bas, (Yo ), define

Yo : Crs Ly, Palay)) =7((y)),

where a(y) is the parallel transport of 1 along 7, with respect to the norm
e~ P | -2 and 7(¢(y)) is the parallel transport of 1(1) along ¢ oy, with respect
to the norm || - ||%.

Clearly, we have the first equation in (5.8). The estimates on derivatives can
be done as follows: If a : Uy — Uy x C and 7 : Uy +— ¢* L|y, are two sections
such that ¥ (a) = 7, then we have the identity:

V1 = V/(/;a(a) + 'J}a(va)a

where V denote the covariant derivatives with respect to the given norms on
line bundles C; x C and L. By the definition of 4, one can easily see that
Vo (ya) = 0. To estimate Vi), at y, we differentiate along v, to get

VrVxT = Vr(Vxia(a)) + Pa(VrVxa),

where T is the unit tangent of v, and X is a vector field along v, with [T, X] = 0.
Here we have used the fact that VTz/NJa = 0 which follows from the definition of
1. Using the curvature formula and the fact that a is parallel along -, we see
that it is the same as

€¢*WOO(T7X) J}a(a) = VT(VX"ZJQ(G')) + wx(TaX) a.

Using the fact that w, is the limit of i¢*w. as i tends to oo, we can deduce from
the above that V7 (V x1q(a)) is sufficiently small so long as ¢ = ¢; is sufficiently
large. Since V x1, = 0 at y4, we see that ||V@Za||cowa) can be made sufficiently
small. The higher derivatives, say up to order 6, can be bounded inductively in
a similar way.

20Property (iii) is not needed in the subsequent proof. For proving this lemma, we may
simply take a cover of V(z;€') by balls of comparable size such that (i) holds and choose j
sufficiently large.
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Next we want to modify each 1,. For any a, 3, we set
Oy = V3t othy : Uy NU, +— S

Clearly, we have
Our = Oary -0y on Uy, NU,NU,,

so we have a closed cycle {f,~}. By the derivative estimates on each Yy W
know that each 0, is close to a constant. Therefore, we can modify 1,[}(178 such
that each transition function 6, is a unit constant, that is, we can construct
Ca : Uy — S! such that if we replace each QZJQ by z/;a - (w, the corresponding
transition functions are constant. Moreover we can dominate |[V(4||c+ by the
norm ||V ||cs (possibly) on a slightly larger ball.

The cycle {n,} of constants gives rise to a flat bundle F', and we have
constructed an isomorphism

) —t
§:F = Ky

over an neighborhood of V (z; €¢/) satisfying all the estimates in (5.8).
If we replace ¢ by k¢, we get an analogous isomorphism

¢ FF e KM
We want to choose k to get the required ¢, ¢ and 1. Set
Uzie'se) = {y € C Ve < pz(y) < ¢!, yeE I

where y = p,(y)y and E. C 0B1(0,g.)\S, is an open submanifold containing
all z € 0B1(0, g5)) with

d(2,8, N0B1(0,g2)) > €,

where d(-,-) denotes the distance function on 9B (0, g,). Furthermore, we can
choose E. such that its topology depends only on € and S,.

Assume that ¢’ is sufficiently such that U(x; €, €) C V(x;¢€).

Since the flat bundle F'|y7(5.e ) is given by a representation

p:m(Ux;é,e) = m(E) — S

Note that p is the pull-back of a homomorphism p : Hy(E,,Z) + S* through
the natural projection: m(E.) — Hi(FE.,Z). Clearly, H,(F,,Z) is the sum of
an abelian group of finite rank m and a finite group of order v. Observing that
m and v depend only on € and S,, there is an k, which may depend on m, v
and J, such that F* is essentially trivial on the scale of 6, i.e., the corresponding
transition functions are in a §-neighborhood of the identity in S, where §'s
depends only on and much smaller than §.

We reset £ to be the k-multiple of the initial £. If € is much smaller than e
and k71, we have

E 2V (zie) = {y € Cole < Vhpa(y) < e, VEd(y,Ss) > €} C Uxiée).
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We can redefine ¢ as the composition of the scaling map y + k= 'y : C, — C,
and the initial ¢. Then this newer ¢ maps V(z;€) onto k=2 V(z;¢). Since
(Moo,ij_Qwoc,m) still converge to the cone (Cg,g.,x), this newer ¢ satisfies
properties (1) and (2) required by our above discussions if j is sufficiently large.
Thus, we can apply the above for this newer ¢ to get corresponding »&a, F etc..
The newer flat bundle F, which is the same as F* for older ¢, has transition
functions in a ¢’-neighborhood of the identity in S 1
By modifying 1, restricted to F, we can construct a bundle isomorphism
¢ :Cp x C+— F over E, whose norm is bounded by a constant much smaller
than 0. This ¢ extends trivially to an isomorphism over U(z; k=122, k/?¢)
with controlled norm. It follows that ¢ = & - ¢ gives the required isomorphism
between C, x C and K JT/Ii over ¢(V (z;€)). This completes a proof of this lemma.
O

In the above lemma, k& may depend on z, or more precisely, C,. There is
another approach to choosing k which depends only on n and B.. The key is
to show that CT\Sqc has finite fundamental group of order v > 1 which depends
only on n. Then we just need to take £ to be a multiple of v such that £5., is
sufficiently close to 1 modulo Z.

Now we prove (5.6), consequently, the partial C°-estimate for conic Kéhler-
Einstein metrics. As for smooth Kéhler-Einstein metrics, we will apply the L2-
estimate to proving (5.6). The method is standard now and resembles the one
we used for Del-Pezzo surfaces in [Ti90]. First we construct an approximated
holomorphic section 7 on M., then one can perturb it into a holomorphic
section 7 by the L2-estimate for O-operators, finally, one uses the derivative
estimate in Corollary 4.2 to conclude that 7(x) # 0. These steps are similar to
those used in [DS14] as well as [Ti13] in establishing the partial C%-estimate for
smooth Kahler-Einstein metrics.

Let € > 0 and § > 0 be sufficiently small and be determined later. We fix
¢ =172 where r = r; for a sufficiently large j, such that Lemma 5.7 holds for
£, € and 6. Choose ¢ and ¢ by Lemma 5.7, then there is a section 7 = ¥(1) of
KJ\_/Iio on ¢(V(z;¢)) satisfying:

7|2 = er=. (5.9)
By Lemma 5.7, for some uniform constant C, we have
07| < Ca. (5.10)

Now let us state a technical lemma.

Lemma 5.8. For any € > 0, there is a smooth function vz on C, satisfying:
(1) ve(y) = 1 if d(y,Sz) > €, where d(-,-) is the distance of (Cy,gsz) ;
(2) 0 < v < 1 and ve(y) = 0 in an neighborhood of S;;
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(3) [Vvel < C for some constant C = C(€) and

/1 |V7d2w2 S €.
B._1(0,9z)

Proof. This is rather standard and has been known to me for quite a while.
The arguments are based on known techniques: First we prove this lemma in a
simple case, then we reduce the general case to this case by using partial C°-
estimate already established. But the arguments are tedious and lengthy, so we
will refer the readers to Appendix 1 for its complete proof. Here we only prove
this lemma in a simple case and explains briefly why Lemma 5.8 should be true
in general.

A key reason is the fact that the Poincaré metric on a punctured disc has
finite volume.

Consider the simple case: S, = C"7!, ie., C, is of the form C"~! x C.,
where C. is biholomorphic to C, moreover, the cone metric g, coincides with
the standard cone metric

95 = dzidz; + (dp* + B*p*do?),
i=1

where 21, , z,_1 are coordinates of C"~! and 0 < § < B, €.g., one of them
in Lemma 5.5, (3) or (4). Clearly, p = d(y, Sz).

We denote by 1 a cut-off function: R — R satisfying: 0 < n < 1, |9/(¢)] < 1
and

n(t) = 0 for t > log(—logd®) and n(t) = 1 for t < log(—logd).

Here 6 < 1/3 is to be determined. Now we define as follows: If p(y) > €, put
Ye(y) = Land if p(y) < €

) = n (s (s (%) ) ).

Clearly, 7¢ is a smooth function and we have
Yely) = 1 if p(y) > 6 and ~e(y) = 0 if p(y) < 6%

Furthermore, the support of |V7e[(y) = 0 is contained in the region where
0%€ < p(y) < J€. In the region, we have

It follows that

F}
Ap—1 dr Ap—1
V2w < 2 / < =,
Lem%ﬂ'” T = @2 fo r(“logr)? T @ 2(—logd)
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where a,,_1 denotes the volume of the unit ball in R2"—2,

Now choose 6 such that a,_; < €"~1(—logd), then we have

/ Vel < e
B_-1(0,9z)

Clearly, we also have |V7e| < C for some C' = C(€).

In general, we know from Section 3 that S, is a union of S? and S, where
S, is a subcone of complex codimension at least 2 and 89 consists of all y € S,
such that a tangent cone of (Cy,g,) at y is C*~' x C; with the standard metric
g3

’ Using the fact that S, is of complex codimension at least 2, we can use
standard methods to construct a function x with required properties (1)-(3) in
an neighborhood U of S, N B.-1(x, g,) such that it is equal to 1 near QU. Then
X vanishes in an open neighborhood B and B C U.

For each y € S;\B, there is a tangent cone C, as that in the simple case
we have considered above, so we can use the arguments in rest of this section
to establish the partial C%-estimate near y. This in turns gives some structure
results for C; near y and allows us to use the construction in the above simple
case to get a function v, with required properties (1)-(3) on Bay(y)(y, g2). Since
S;\B is compact, we can cover it by finitely many balls B,.(,,)(¥s, gz ), then our
~ will be obtained by using x, those 7,,’s and a partition of unit associated to
U and By, (y,) (4, 9z)’s.

The detailed arguments along this line will be presented in Appendix 1. [

Now, assuming Lemma 5.8, we continue the proof of the partial C%-estimate.
First we define 1 to be a cut-off function satisfying:

n(t) =1 for t <1, n(t) =0 for t > 2 and |n'(¢)] < 1.

Let o > 0 be determined later. Choose € such that 4z = 1 on V(z;dp). Then
we choose € such that 6 > 4 € and V(z;€) contains the support of 4z constructed
in Lemma 5.8. Clearly, we can make € as small as we want if € is sufficiently
small.

We define for any y € V(z;e¢)

o) = n(2e(p(y) + p2(¥)™")) 1e(y) T(d(y)). (5.11)

It is easy to see that 7 vanishes near the boundary of ¢(V (x;¢)), therefore, it
extends to a smooth section of K];[ic on M. Using that dg > 4e and the
definition of the cut-off function 7, we deduce from (5.11)

7 =71 on ¢(V(z;d)). (5.12)

By a direct computation, we derive from (5.10) and (5.11)

/ ||5ﬂ|§owgo < pr?nT2 (5.13)

oo
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where || - ||oo denotes the Hermitian norm associated to ws, and v = v(d,e),
which can be made as small as we want so long as &, € and € are sufficiently
small. Moreover, we have

J L e (5.14)
M d(V (z3¢€))

oo

Clearly, the support of 7 stays outside the singular set S of M,,. We will
modify 7 to get a newer section 7 with support away from D.,. If S, < 1,
then S contains D, and consequently, we can take 7 = 7. If 8 =1, Dy, is a
divisor defined by a holomorphic section o4 of KA_/; . Put p = ||0so]]oo- Let 7
be a cut-off function: R — R satisfying: 0 < 7 < 1, |7/(¢)] < 1 and

IN

f(t) = 0 for t > log(—logé?) and 7(t) = 1 for t < log(—logé).
Now we define 7 by

7(2) = 1 (log (—log p(2))) 7(2).

Then 7 supports away from S U Do, and coincides with 7 on {p > ¢}. When €
is sufficiently small, we can deduce from (5.13) and standard computations

/ [|07||2, Wl < 2v 22, (5.15)

oo

Of course, this is automatically true if S, < 1.

Set U(z;€) to be ¢p(V(z;5€)) if foo < 1 and ¢(V(z;€))\{2|doo(z, Do) < €} if
Boo = 1, where do (-, Do) denotes the distance from Do, with respect to weo.
We choose € such that 7 =7 on U(z;dp). Clearly, the support of 7 is contained
in U(z;e) if € is sufficiently small.

Note that (M\D,w;) converge to (Ms\S U Do, woo) and the Hermitian
metrics H; on KA_/[1 converge to Hoo on My \ (SU Dy) in the C*-topology.
Therefore, for a sequence d; > 0 with lim§; = 0, there are diffeomorphisms

6i + Moo\Ti (SU Doo) =+ M\T;(D)
and smooth isomorphisms
Fi: Ky = Ky
over Mo \T; (S U Dy,), where
T:(D) ={xz € M | di(z,D) < ¢;}

and
T, (SUDy) ={x € Mx | doo(2,SU Dw) < 6;},

where d;(-, D) (resp. doo(-, S U Ds)) denotes the distance from D with respect
to the metric w; (resp. ws), satisfying:
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Ci: ¢i(Mo\T; (SU Do) € M\T;(D);
Cy: moF; = (/Bl 0 T, Where 7; and 7., are corresponding projections;
Cs: ||¢fw; — weollo2(Ma\ Ty (SUDL)) < i
Cy: ||[F7H; — Hoollcr(roo\Ti(SUDS)) < i
We may assume ¢ sufficiently large so that U(x;€) C M \T; (SU D).

Put 7; = F;(7), then it follows from the definition of 7
7= F(r) on ¢(U(x;6)). (5.16)

Because of (5.15), for i sufficiently large, we have

/ [|07:])? Wit < 3vrinT2 (5.17)

i

where || - ||; denotes the Hermitian norm corresponding to H;.
By the L2-estimate in Lemma 5.4, we get a section v; of K;/ such that

({;Ui = 5711

and )
/ o2 wp < 7/ 1G7 IR Wl < 3urn.
M ( M
2

Here we have used the fact that £ = r~=.
Put 0; = 7; — wv;, it is a holomorphic section of Kj\_f. Using (5.14), the
L2-estimate on v; and the definition of 7;, we can easily show

/ loilPur < C, (5.18)

oo

where C is independent of 4. It follows from (5.16) and (5.10) that the C-norm
of dv; on ¢;(U(x;60)) is bounded from above by ¢d for a uniform constant c.
By the standard elliptic estimates, we have

swp el < OG0 [ fuler < €57 (5.19)
S(U (2;260)N¢(B10(0,9z))) M

Note that we always use C' to denote a uniform constant. For any given &y, if §
and € are sufficiently small, then we can make v so small that

8Cvr < 53".

lloalli = 1E): = lloills > 2 on $i(U(w;60) N ¢(Buo(0,92)))-  (5.20)

Then we can deduce from (5.16), (5.9) and (5.16)
1
3
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On the other hand, by applying the derivative estimate in Corollary 4.2 to oy,
we get

1

2
sup ||Vay||; < Ce"% </ ||ai||?w?) < C'r 1 (5.21)
M M

By our choice of ¢, if € is sufficiently small compared to §p, for some u €
0B (o0, g ), we have

d(z, ¢(200u)) < d(z, ¢(eu)) + d(¢p(eu), $(20pu)) < 10dg 7
If 4 is sufficiently large, we deduce from (5.20) and (5.21)

1
loilli(z:) = 3 = C"d,
it follows that if we choose &y such that C'dy < 1/8, then ||oy||:(x;) > 1/8.
Combining with (5.18), we see that (5.6) holds. therefore, Theorem 1.2, i.e., the
partial C%-estimate for conic Kihler-Einstein metrics, is proved.

As indicated in [Ti10] and verified in [DS14] for smooth K&hler-Einstein met-
rics (also see [Li12]), by the arguments in the proof of the partial C%-estimate,
we can prove the following regularity for M.:

Theorem 5.9. The Gromov-Hausdorff limit My, is a normal variety embedded
in some CPN whose singular set is a subvariety S of complex codimension at
least 2.21 If Bo < 1, S is a subvariety consisting a divisor Do, and a subvariety
S of complex codimension at least 2. If Boo =1, S = S. Moreover, Dy, is the
limit of D under the Gromov-Hausdorff convergence.

Proof. For the readers’ convenience, we include a proof. Let us recall some
well-known facts (cf, [Ti10]). For any ¢ and sufficiently large ¢, we can choose
an orthonormal basis {o; ¢} of HO(M, K;;) with respect to w; and use this to
define a Kodaira embedding

Yig: M +— CPM where Ny + 1 = dim HO(M, K;}).

By using the L2-estimate for d-operator, we can find an exhaustion of M, \S by
open subsets V7 C Vo C --- C Vp C --- such that v; o converge to an embedding

VYoo : Vo C My +— CPNe,

By the partial C?-estimate, there is an integer m > 0 such that for any ¢ = mk,
i, converge to an extension of ¢ ¢ on My, under the convergence of (M,w;)
t0 (Moo, woo ). We still denote this extension by

Voot : Moy = CPNe,

21The normality was not necessary for proving Theorem 1.1. In all the applications I know,
it suffices to have that S is a subvariety of complex codimension 2.
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By the estimate in Corollary 4.2, ;. are uniformly Lipschtz, so 1, is a
Lipschtz map.

Claim: M is a variety.

For this, we only need to show that for k > n+1, ¢ ¢ is a homeomorphism from
M onto its image which is also the limit of complex submanifolds ; (M) C
CPNe,

By the same arguments as those in proving the partial C°-estimate, we can
show: For any r > 0, there are k(r) and s(k) such that if & > k(r), then for any
x,y € M such that d;(x,y) > r, where d;(-, -) denotes the distance of the metric
w;, there is a holomorphic section ¢; € HO(M, KA_/), where ¢ = mk, satisfying:

/ lllfwi =1 and [llsilli(z) — llslli()] > s(k). (5.22)
M

The above claim follows from this and the effective finite generation of the
anti-canonical ring of M as shown in the thesis of Chi Li [Li12]. 22 For the
orthonormal basis {0, q}o<a<n,, of H°(M,K;;™) with respect to w;, by the
partial C?-estimate and Corollary 4.2, we have

N,
c(m) <Y llovallf < e(m)™ (5.23)
a=0

where ¢(m) is a uniform constant independent of i.

Lemma 5.10. Foranyl > 1 ands € H°(M, K;/[(nﬂﬂ)m), there are ho,--- ,hn,,
in HO(M, K&(nﬂ)m) satisfying:

N,
¢ = haoia and [ el < Con0) [ lllZer, (5.24)
s " [t " [t
a=0

where C(m, 1) is a constant depending only on c(m), | and n.

This is due to Chi Li (see [Lil2], Proposition 7). He proved this by using
the Skoda-Siu type estimate (see [Siu08], 2.4).
Note that for any « € M., and k > 1, we have

Yok (Woom () C Y3 m (Yoo,m (1)) (5.25)

Using this and Lemma 5.10 with ¢ — co, we get

wc:ol,m(n+1+l)(¢Oovm("+1+l)(‘r)) 2 Z[};ol,m(n+l)(w°°:m("+1)(x))'

It follows from (5.22) that for any z # y € M,

woo,m(n-ﬁ-l-‘rl)(x) 7é woo,m(n-‘rl-ﬁ-l)(y)

22 As T advocated in many occasions before (cf. [Ti10]), the partial C?-estimate corresponds
to an effective version of the finite generation of the anti-canonical ring. Chi Li showed
precisely in [Li12] how this works.

34



if [ is sufficiently large. Therefore, we can get

’L/)oo,m(n+1) (.73) 7é woo,m(nJrl) (y)

This implies that ¢oe (1) 18 @ homeomorphism, so My, is a variety.

There is another way of proving that s mkr is a homeomorphism for k
sufficiently large. By (5.25), the composition oo m, - w;olmk is a well-defined
map from the variety Y,,x onto Y,,, where

Yok = lim ¢ (M) € CPYNm5 Yy, = lim 9, (M) € CPNm.
71— 00

71— 00

Moreover, this map is also the limit of holomorphic maps ; », - w; ;k, so it

is a holomorphic map. Since 9o restricted to V,, is an embedding for m
sufficiently large, we know that ¢oe mk (V5 (2)) is either a point or a connected
subvariety in the complex limit space Y;,x. The second case can be ruled out
by using the fact that there is a bounded function u such that

. |
W _
mk FS Yk

ym) + V -1 85u,

(1/100,771 ) wgol,mk)*(WFS

1
m
where wgg always denotes the Fubini-Study metric. This again shows that M,
is a variety.

By Theorem 4.3, D converges to a divisor Do in Moo. Clearly, ¥oo m(ns1)(S)
contains the singular subvariety S and Yo m (n+1)(Doo) is a divisor of the variety
Voo,m(n+1)(Moo). We will identify Moo with ¥ m(ni1)(Me). We claim that S
coincides with S if B = 1 and SU D if S5 < 1. This can be seen as follows:
By the partial C%-estimate, we have a continuous function ¢, which is smooth
outside S, such that

1 _
Woo = ZCUFS|MOO + \/_716890; wFS|MOO < Cv("}ooa where £:m<n+1)

Furthermore, we have

1 _ n o
<£ws|Moo + \/—71(’)&;7) — HUooH02(1 Boo)e—uoosoQ

where 04 is a defining section of Dy, fieo = 1 — (1 — Bso) A and Q is a volume
form with curvature jwps and corresponding to a Hermitian metric || - ||o on
Kyt .

Near any x outside S if oo = 1 or S U Dy if B < 1, the right side
of above equation is smooth and consequently, w, is equivalent to wgpg near
x. Hence, the regularity theory for complex Monge-Ampere equations on high
order derivatives implies that ¢ is smooth near x and z is outside S. Our claim
is proved. Note that S (resp. S\Dso) is of complex codimension at least 2 if

Boo =1 (resp. foo < 1).

Next we prove that M, is normal. First we claim that M, is locally con-
nected. This implies that the singularity of M, is of complex codimension at
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least 2. If B = 1, it is trivially true since the singular set of M, is of complex
codimension at least 2. So we may assume (., < 1. There are several ap-
proaches. One can use a local version of the Cheeger-Gromoll splitting theorem
(cf. [An90]). One can also generalize the arguments I had in [Ti90] or use the
Cheeger-Colding theory.

We have shown that the singular set S of (M, wso) is a subvariety made of
the divisor Dq, possibly plus a subvariety S which is of complex codimension at
least 2 outside Do,. Therefore, if the claim is false, then M.\ Do is not locally
connected near a point, say z, in D, such that a tangent cone C, of M., at =
is of the form C"~! x C’, where C’ is a 2-dimensional flat cone of angle 2.
However, C,\S, is connected, so M\ Do is connected near x, a contradiction.
Therefore, M., must be locally connected.

Note that the claim can be also deduced from a result of Colding-Naber who
proved the convexity of My.\S.

To conclude that M, is normal, we may assume that M., C CPY and prove
that the affine variety V' = M.\ H is normal for any hyperplane H C CPY. By
the general theory in algebraic geometry, we have a normalization 7 : U — V,
moreover, U is also an affine variety in some C™ and =« is a finite morphism
which is an isomorphism on 7=}(V\S). Any coordinate function z; of C™
(i = 1,--- ,m) restricts to a holomorphic function f; on V\S. Since § is of
complex codimension 2, we can show that f; is bounded. By using this and the
formula for A|f;|?, we can deduce that |0f;]? is locally integrable. Next, as we
did in deriving the partial C°-estimate, we can show that |df;| is bounded on
any compact subsets. Hence, all f; (i =1,--- ,m) extend to Lipschtz functions
on V. This implies that V = U, so V, and consequently, M., is normal.

O

Of course, one can further analyze the finer asymptotic structure of w, along
D... For instance, we can show that w., is a conic Kahler-Einstein metric with
cone angle 273 along Do in a weaker sense?3. It is an interesting problem to
examine the precise behavior of wy, along D.

6 Proving Theorem 1.1

In this section, we complete the proof of Theorem 1.1, i.e., if a Fano manifolds
M is K-stable, then it admits a Kéahler-Einstein metric. As I pointed out in
describing my program on the existence of Kéhler-Einstein metrics, the method
of deriving Theorem 1.1 from the partial C%-estimate in the context of the Aubin
continuity method had been known to me for a long time (cf. [Ti10]). Here, we
adapt the argument to the context of the Donaldson-Li-Sun continuity method.

As mentioned in the introduction, the key for proving Theorem 1.1 is to
establish the C%-estimate for the solutions of the complex Monge-Ampere equa-
tions for 8 >1— A"1:

(wg + V=100 )" = ehﬁf““"wg, (6.1)

23The angle 278 may be different on different connected components of Doo.
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where wg is a suitable family of conic Kéhler metrics with [wg] = 27e; (M) and
cone angle 273 along D and hg is determined by

Ric(wg) = pw + 27(1 — B)[D] + v—100hs and / (ehe — Hwg = 0.
M

Let E be the set of 3 € (1 — A7!,1] such that (6.1) has a solution pg. By the
discussion in the introduction, we know that F is a non-empty and open interval
E = (1 - X1 p) for some 8 < 1 or (1 —A"% 1]. Actually, such a solution (g
is unique, so {¢s} is a continuous family on M and smooth outside D. 24 If we
can prove that E is closed, then E = (1 — A~!,1] and the proof of Theorem 1.1
is completed. We will use the K-stability to derive a contradiction if F is not
closed.

Now assume E = (1 — A7, 3) for some 3 < 1. We claim: If 3 is not in
E, |l¢sllco diverge to oo as B tends to B. If ||¢pl|co are uniformly bounded,
then we can apply the results in [JMR11] to get a uniform C?7-estimate for
¢p for some v > 0. This was done in [JMR11] as follows: Jeffres, Mazzeo and
Rubinstein first used the Chern-Lu inequality and the Maximum Principle to
bound A’pg uniformly, where A’ denotes the Laplacian with respect to the conic
Kéhler-Einstein metric @5 = wg++/—1 099 pg. This implies that &g is uniformly
equivalent to wg and (6.1) becomes uniformly elliptic. Then they adapted known
techniques for Monge-Ampere equation to conic setting and derived a uniform
C?7-estimate for ¢3.25 Now, by taking a subsequence if needed, pg converge to
a C?7 function ¢ which satisfies (6.1) with 3 = . Then the known regularity
theory for conic complex Monge-Ampere equations (see [JMR11]) implies that
¢z is a solution of (6.1) and consequently, f € E. This is a contradiction, so
our claim is verified.

Our first proof is to use the CM-stability. For simplicity, we first assume that
there are no nonzero holomorphic fields on M. Let us recall the CM-stability
(cf. [Ti97]). It can be defined in terms of Mabuchi’s K-energy:

ot . e
M, (p) = v /0 /M ¢ (Ric(wip) — pwry) Awi, LA dt. (6.2)

Given an embedding M c CPV by K;/, we have an induced function on
G = SL(N + 1,C) which acts on CP:

F(U) = Mwo("/’o)a (6.3)
where 9, is defined by

%O—*(JJFS = wy + V—100v,. (64)

24In fact, one can prove this continuity and smoothness directly by using the Inverse Func-
tion Theorem as one argued for the openness of E.

25In [JMR11], they used the Krylov-Evans method in a conic setting for deriving C?7-
estimate. However, more arguments are needed in order for them to adapt the Krylov-Evans
method to the conic case. In February 14 of 2014, they added an appendix which contains
a proof of the required C?7V-estimate by using the method from my PKU Master degree
thesis. In early 2013, Chen-Donaldson-Sun gave a C?:7-estimate for the special case of conic
Kaéhler-Einstein metrics.
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Note that F(o) is well-defined since v, is unique modulo addition of constants.
Similarly, we can define J on G by

J(0) = Juy (o). (6.5)

Definition 6.1. We call M CM-stable with respect to K, L if F is proper, i.e.,
for any sequence o; € G,

F(0;) — oo whenever J,, (¢y,) — 0. (6.6)

We call M CM-semistable with respect to K;f if F is bounded from below.
We say M CM-stable (resp. CM-semistable) if it is CM-stable (resp. CM-
semistable) with respect to K—° for all sufficiently large £.

Remark 6.2. In [Ti97], the CM-stability is defined in terms of the orbit of a
lifting of M in certain determinant line bundle, referred as the CM-polarization.
It is proved there that such an algebraic formulation is equivalent to the one in
Definition 6.1 (cf. [Ti97], Theorem 8.10).

The following is a conic version of what I knew for the Aubin’s continuity
method (cf. [Ti10]).

Theorem 6.3. If M is a Fano manifold which is CM-stable, then M admits a
Kdhler-FEinstein metric.

Proof. By the above discussions, if M does not admit any Kéahler-Einstein met-
ric, then there is a sequence f3; with lim3; = f < 1 such that the C°-norms
of p; = g, diverge to co. By the partial C%-estimate we established in last
section, we can have an embedding M C CPY through a basis of H°(M, K]T/[Z)
for some ¢ > 0 and o; € G such that

Vi = Yo, i —@illoo < C. (6.7)
Note that C always denotes a uniform constant. We claim:
Mwo((pi) Z F(O’z) — C (68)

Let us prove this claim. It was shown in [Ti00] (also [LS14], Proposition 3.5)
that

M) = 5 [ o8 (22 ) w4 Tali) = Tuse)) + 35 [ o = )

where hg is defined at the beginning of Section 2 and

(.d(] V /

It follows from the above and (6.7) that M, (¢;) is bounded from below by

1 n
M, (40) + 7 /M 1og( i ) (@ —wl) - C

n—1

> / ) (Ric(wo) — Ric(wy,) /\Zw ANwy * = C
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Then (6.8) follows from this and the fact that Ric(wy,) is bounded from above.
Next we recall the twisted K-energy:

M) = Moy (9 (1) (B ()T (0)) 4 - [ 1ogl 1811 (i)
M

Claim: M, ,,(¢;) are uniformly bounded from above. This follows from a
known relation between M., , and F., , (see [LS14], Proposition 2.10, (2))
which generalizes a formula of Ding and myself:

1
Moo i(0) = 16Fan0) + 5 [ (ho = (1= B 0g ISIE +aa.) 5.

where p; =1 — (1 — ;) X and ag, is determined in (2.1). Here we used the fact
that wy, is a conic Kéhler-Einstein with cone angle 275;. Using Lemma 2.4
with t = p; and letting 6 — 0, we get

MWOvHi (‘pz) < C. (69)

Since M is CM-stable with respect to K}/, it follows from (6.8) and (6.9) that
i, and consequently, ¢;, are uniformly bounded. This is a contradiction, so
our theorem is proved. O

Next we introduce the K-stability. I will use the original one from [Ti97].
First we recall the definition of the Futaki invariant [Fu83|: Let M, be any
Fano manifold and w be a Kéhler metric with ¢; (M) as its K&hler class, for any
holomorphic vector field X on My, Futaki defined

far, (X) = —n/M Ox (Ric(w) —w) Aw™™ !, (6.10)

where ixw = \/—100x. Futaki proved in [Fu83] that fy;(X) is independent
of the choice of w, so it is a holomorphic invariant. In [DT92], the Futaki
invariant was extended to normal Fano varieties: Assume M > CPY through
a basis of H(M, KX/) for a sufficiently large /. For any algebraic subgroup
Go = {0(t)}tecr of G = SL(N + 1,C), there is a unique limiting cycle

— 1; N
My = lim o (t)(M) € CPY.

Let X be the holomorphic vector field whose real part generates the action by
o(e~*®). By [DT92], if My is normal, we can still use (6.10) to define a generalized
Futaki invariant faz, (X). In fact, we only need that My is irreducible in [DT92].
In [Do02], Donaldson gave a formulation of the Futaki invariant fys, (X) which
works for any variety Mp. One can also define faz,(X) in terms of asymptotic
expansion of the K-energy: In his thesis [Li12] (also see [PT06]), Chi Li observed
that for any algebraic subgroup Gy = {o(¢) }tec+ of G,

F(o(t)) = = (fa (X) — a(Go))log [t + O(1) as t =0,
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where a(Gg) € Q is non-negative and the equality holds if and only if M, has no
non-reduced components. He also pointed out that (6.11) can be actually de-
rived by using the arguments from [Ti97]. The same arguments can be also used
to identify far,(X) — a(Go) with a Futaki invariant fy; (X) of a G-equivariant
semi-stable reduction ¢ : X — X, where X = {(x,t)|z € o(t)(M) or My},
My = q ' (M) and X is the field generating the action of Gy on X. The
existence of X is established in [LX14].26 In particular, we have

F(o(t)) = —Re(fy, (X)) log[t|> + O(1) as t— 0. (6.11)
One can also prove (6.11) by using the equivariant Riemann-Roch Theorem.

Definition 6.4. We say that M is K-stable with respect to K;/ if
Re(fa, (X)) 2 0

for any Go C SL(N +1,C) with a normal My and the equality holds if and only
if My is biholomorphic to M. We say that M is K-stable if it is K-stable for all
sufficiently large £.

This was the one given in [Ti97]. There are other formulations of the K-
stability by S. Donaldson in [Do02] and S. Paul in [Pal2]. Donaldson’s formula-
tion of the K-stability does not require that My is normal. However, by [LX14],
Donaldson’s formulation is equivalent to Definition 6.4.27

It was proved in [Ti97] that if M is a Fano manifold without non-trivial
holomorphic vector fields and admits a Kdhler-Einstein metric, then M is K-
stable.

To prove Theorem 1.1, we need to show that if M is a K-stable Fano man-
ifold, then it is CM-stable. In view of (6.11), the K-stability means that F
is proper along any one-parameter algebraic subgroup of G. Hence, by The-
orem 6.3, our problem is whether or not the properness of F on G follows
from the properness of F along any one-parameter algebraic subgroup of G, or
equivalently, the problem is whether or not the CM-stability is the same as the
K-stability. This is an algebraic problem in nature. We will prove it by using
the approach due to S. Paul 2® and results in [Pal2].

As in classical Geometric Invariant Theory, we deduce the CM-stability from
the K-stability in two steps. The following lemma provides the first step.2?

Lemma 6.5. Let T be any mazimal algebraic torus of G. If the restriction F|t
is proper in the sense of (6.6), then M is CM-stable.

26In fact, we only need X has no multiple components in its central fiber, then one can
simply take it as the normalization of a base change of X.

27Paul’s definition also turns out to be the equivalent.

281 learned this approach from S. Paul in the late summer of 2012. In [Pal2] and [Pal3],
Paul gave detailed arguments for his approach. Here I used some different arguments which
I have been familiar for long.

29This step was done more algebraically and differently in [Pal2] or [Pal3].
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Proof. We prove it by contradiction. Suppose that we have a sequence o; € G
such that F(c;) stay bounded while J(o;) diverge to oo.

Recall the Cartan decomposition: G = K- T - K, where K = U(N + 1).
Write o; = kjt;k; for k;, k} € K and t; € T. Then we have that F(t;k;) = F (o)
stay bounded while J(t;k;) = J(0;) diverge to oco.

On the other hand, since each k; is represented by unitary matrix, we can
show easily

[Ve, — ek, < log(IN +1).

Using the fact that both Ric(wy, ) and Ric(wy, , ) are bounded from above and
arguing as in the proof of Theorem 6.3, we can have

IF(t;) — F(t:k) < C.

It follows that F(t;) stay bounded while J(¢;) diverge to co. We get a contra-
diction. O

Theorem 6.6. If a Fano manifold M is K-stable, then it is CM-stable.>°

Proof. We will fix an embedding M C CPY of degree d by using a basis of
HO(M, K]T/). By Lemma 6.5, we only need to prove that F is proper on a
maximal algebraic torus T C G = SL(N + 1,C).

First we recall the Chow coordinate and Hyperdiscriminant of M ([Pal2]):
Let G(N —n—1, N) the Grassmannian of all (N —n — 1)-dimensional subspaces
in CPN. We define

Zy ={PeGIN—-n—1,N)|PNM # 0}. (6.12)

Then Z); is an irreducible divisor of G(N —n—1, N) and determines a non-zero
homogeneous polynomial Ry € C[M(,41)x(n+1)], unique modulo scaling, of
degree (n + 1)d, where Myy; denotes the space of all k x | matrices. We call
Rjs the Chow coordinate or the M-resultant of M.

Next consider the Segre embedding;:

M x CP"" C CPN x CP"™' = P(My, (ny1))
where MY, , denotes its dual space of Mjy;. Then we define
Yar = {H C P(M,), (ny1) | Tp(M x CP"™!) C H for some p}.  (6.13)

Then YY), is a divisor in P(M){X(NH)) of degree d = n?d, and consequently,
determines a homogeneous polynomial Ajs in C[M,,x(n+1)], unique modulo
scaling, of degree d. We call A, the hyperdiscriminant of M.

Set

r=Mm+1)dd, V= C[Muiiyxvinls W = Co[Mpuy (i),

30This theorem is actually true for any polarized manifold and due to S. Paul. Its proof
was also given in detail in [Pal3] and [Til3].
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where C,.[C*] denotes the space of homogeneous polynomials of degree  on CF.
Following [Pal2], we associate M with the pair (R(M), A(M)) in V x W, where

R(M) = R4, and A(M) = A[TD?,
Fix norms on V and W, noth denoted by || - || for simplicity, we set

Pow = log|lwl|| — log|v]|. (6.14)

The following was first observed by S. Paul.

Lemma 6.7. Let (0,B) — o(B): Gxgl — gl be the natural representation by
left multiplication, where gl denotes the space of all (N +1) x (N + 1) matrices.
Then we have

|J(0) = pray,i-(0)| < C, (6.15)
where T is the identity in gl and I" € U = gl®".

Proof. 1t is known (cf. [Pa04])
(0 +1)3(0) = (0+1) [ bou ~ logllo(Ra)l
M
This is equivalent to

n

P e =~ logllo(ROMD) (6.16)
M

(n+1)dJ(o)

If we write 0 € SL(N+1,C) as a (N+1) x (N +1)-matrix (¢;;) with determinant
one, then the Hilbert-Schmidt norm of ¢ is given by

N
loll> = > W

4,j=0
Clearly, we have
N N
Yo =log [ D1 0811 |,
i=0  j=0

where {S;}o<j<n is an orthonormal basis. By direct computations, we can
easily show

N N n
W
ogllol* = [ 1og (S 1Y ausilP ) | < c

=0 j=0
Combining the above two with (6.16), we get (6.15). O

Lemma 6.8. Let V, W and U be as above. If F is not proper on T (resp.
Go), then the orbit of [R(M),A(M)] x [R(M),I"] under T (resp. Go) has
a limit point in (P(V) x W) x ({0} x P(U)) which is an open subvariety of
P(Vae W) x P(VaU), where Gg is an one-parameter algebraic subgroup.
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Proof. First we note that (P(V) x W) x ({0} x P(U)) is T-invariant. It follows
from [Pal2] that for all 0 € G, we have

|F(0) — anpron.ann(o)] < C, (6.17)

where a,, > 0 and C are uniform constants.

By Lemma 6.7 and (6.17), we see that if F is not proper on T (resp. Gy),
then there are o; € T (resp. Go) such that pr(ar),a(ar) (o) stay bounded while
Pr(M), 17 (04) goes to oo. In [Pal2], S. Paul showed

prOu),a(n(0) = logtan® d(o([R(M), A(M)]), o([R(M), 0]))

and
Pr).r(0) = logtan® d(o([R(M), I")), o([R(M),0])),

where d(-,-) denotes the distance in P(V @& W) with respect to the Fubini-Study
metric. Therefore, the limits of o;([R(M), I"]) lie in {0} x P(U) while limits of
o ([R(M), A(M)]) stay in P(V) x W. The lemma is proved. O

Now we deduce Theorem 6.6 from Lemma 6.8. If M is not CM-stable, then
there are v € V,w € W, u € U such that u,v # 0 and § = [v,w] x [0,u] is
in the closure of the T-orbit of z = [R(M),A(M)] x [R(M),I"]. Choose T-
invariant hyperplanes Vo C V and Uy C U, which can be naturally identified
with P(V)\P(Vy) and P(U)\P(Uy), such that x € E = Vo x W x V x Uy
and y € Eg = Vo x W x {0} x Ug. Clearly, the orbit T - y lies in the closed
subspace Eg of E. By taking an orbit in the closure of T -y if necessary, we may
assume that T - y is closed in Eqg. Then, by a well-known result of Richardson
(cf. [Pal2] and also [Til3]), there is an one-parameter algebraic subgroup Go
such that the closure of Gy - x contains a point in Eg which is a subset of
(P(V)x W) x ({0} x P(U)). By Lemma 6.8, this contradicts to the K-stability
of M. Thus, the proof of Theorem 6.6 is completed. O

Theorem 1.1 follows from Theorem 6.3 and Theorem 6.6.

If M has non-zero holomorphic vector fields, instead of proving (6.6), we
prove that for any sequence o; € G,

F(0;) — oo whenever inf J(o;1) = o0, (6.18)
TEAuty(M)

where Auto(M) denotes the identity component of the automorphism group of
M. One can modify the above arguments to prove (6.18) when M is K-stable.
So we can still prove Theorem 1.1 in general cases by using the CM-stability.

There is another way of completing the proof of Theorem 1.1.3! If M does
not admit any Kahler-Einstein metric, we have a sequence ; € £ which con-
verge to 8 ¢ E which is not in E. Then, by taking a subsequence if necessary,

31This proof was outlined in the first version of this paper and is actually simpler.
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we may assume that (M, D,w;) converge to (Mso, Do, woo). By using the par-
tial C%-estimate established in last section, we may further have that (1) M
is embedded in CPN through an orthonormal basis of HO(M, K}) given by
wi; (2) My C CPY is a normal subvariety with a divisor Do.; (3) There are
0; € G = SL(N + 1,C) such that (0;(M),0;(D)) converge to (Ms, Doo). It
follows that the stabilizer G, of (Mso, D) in G contains a non-trivial holo-
morphic subgroup.

Lemma 6.9. The Lie algebra 1~ of Goo is reductive.

Proof. The proof has two steps: In the first step, we prove that any holomorphic
field in 74, is a complexification of a Killing field on M. 32 In the second and
easy step, we show that any Killing field can be extended to be the imaginary
part of a holomorphic field on the ambient projective space.

First we state a technical result which I knew for long. As usual, S denotes
the singular set of M,,. Since SU D,, C My, C CP" is a subvariety, there is
a holomorphic section 7 € H°(CPY, O(k)) which vanishes on S U D, for some
k. Note that 7 is actually given by a homogeneous polynomial of degree k on
CN*L. Also we have K;[i = O(k)|m,, for £ = k¢, so we get a holomorphic
section 7., in H°(M, K]\}i) whose zero set contains S U Do, in particular,
M \71(0) is contained in the regular part of (M, ws,). Choose a cut-off
function 7 : R — R satisfying: 7(t) =1 for t > 2, 7j(t) =0 for t <1, |f(¢)] <1
and |7”(t)] < 4. For any € > 0, we define

Ye(x) = (e log(~log ||7s[§(2),
where || - ||p denotes the Hermitian norm with curvature wpg restricted to M.

Lemma 6.10. Let 1, ¢ (k < n — 1) be bounded functions which are
smooth and satisfy: w; = %wpg ++v/—100v; > 0 outside SU Dy,. Then

n—1—k
lim / V=107 NOye Awi A~ Awg A (1wFS) = 0. (6.19)
e—0 Moo V4

This lemma should be also known to experts in studying the theory on
plurisubharmonic functions since its proof uses the standard arguments in study-
ing (1,1)-currents with locally bounded potentials. For the readers’ convenience,
we will give a proof at the end of this section.

Let X be a holomorphic vector field on CPY which is tangent to M,,. We
will show that there is a bounded function . such that i ywe = v/—1 0 On
MOO\S UD. Let ¢¢ be an one-parameter subgroup of automorphisms generated
by Y which is either the real or imaginary part of X, then we have

1 _
PfwWoo = Jwrs + V=100 ;.

32In [BB12], based on arguments from [Bol1], Berman-Boucksom-Essydieux-Guedj-Zeriahi
proved a strong uniqueness theorem: Kéahler-Einstein metrics on (possibly) singular Fano vari-
eties are unique modulo an automorphism group obtained by complexifying an isometry group.
The step one, and consequently, Lemma 6.9, follows directly from this uniqueness result. This
observation was first pointed out in writing by Chen-Donaldson-Sun [CDS15, I, II, III].
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Since we, is a weakly Kéahler-Einstein metric, we may choose v; such that
W = (Weo + V-100E)™ = e 5w on M, \SU Dy, (6.20)

where & = 1y — ¢ and i = 1 — (1 — B) A\. Each v, or equivalently &, is a
bounded, actually continuous, function. The continuity follows from the partial
C%-estimate. To see this, we note

1 _
Woo = ZWFS + V—=100y.

Then we have
Pfwoo = ¢t wrs + V—100yg o ¢y = — UJFS + vV —100¢y.

It implies
&t = Yy — o = Pg o ¢t — Yo + (i,

where (; is a smooth function on CPY and satisfies
piwps = wps +IV/=109¢;, (o =0.

The partial CC-estimate implies that a subsequence of {logp; ¢} converges to
Ly + ¢ for some constant ¢ as (M,w;) converge to (Moo, weo), Where p; o are
defined in (5.3) as the sum of square norms of sections in an orthonormal basis
of HO(M, K;}) with respect to w;, e.g., the one in above (1). By the gradient
estimate in Corollary 4.2, sections in such a basis are uniformly continuous, so
pi,e are uniformly continuous for any fixed ¢. Since p; ¢ are uniformly bounded
by a positive constant, it follows that 1)y is continuous, so does each &. We also
see that |&| < 1/2 if ¢ is sufficiently small.
It follows from (6.20) that

n—1

—V/=100& A (Z Wi A (qb;‘woo)"“) = (1—eFé)un. (6.21)

i=0

We multiply this by ~.£; and integrate by parts, then by using Lemma 6.10 as
€ goes to 0, we get

/ V=108 N 0& (Zw A (Pfweo)™ ™" 1) / & (1—ePo)wl

It follows easily
1
s mepen <2 [ ke (6:22)

oo

whenever we choose ¢ so small that || < 1/2. Set

Bs(@) =1 = 707" ||7solo(2))-
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Then 75 (z) is equal to 1 when ||7o||(z) < § and supports in the subset Es where
[|7o0||0 is not greater than 2. Then we have

/ V(3sE)[2 el < 3n / s 2wl + £2C, (6.23)
M

oo

where Cs denotes a constant which depends only on §. Let me explain why this
is true: Recall

§t = Yy — Yo = Yo 0 ¢y — Yo + (4.

Since (; is defined on CPY by ¢fwrs = wrs + ¢/ —109¢ and (o = 0, we have
|| < sup \Q| t < C¢t for some constant C¢ independent of ¢, where ¢; denotes
the derivative of (; on t. On the other hand, since 1) is smooth outside SU D,
we have |dig| < C5 outside Ej,/4 for some Cj which may depend on §. Using
the fact that ¢g is the identity map, for ¢ small, we have

&) < oo dr — ol + G| < (C5 sup ||+ Ce)t on Muo\Es)s,

Moo\E6/4

where ¢; denotes the t-derivative of ¢¢. Hence, we have
/ &P wl < CF t2. (6.24)
Moo \Es/2

Using the Cauchy-Schwartz inequality and the fact 45 =1 on Es/2, we get

— n 3 n = n
[ vaseren <3 [ wapen 410 [ vnPlap.
Mo M,

oo oo

Then (6.23) follows from this, (6.22) and (6.24).
For any open E C My, with nonempty boundary OF C My \S, we define

fE V|2 wl

Je 0P wZ,

We call it the first eigenvalue of (E, ws) with vanishing boundary condition.

M(E) = inf{ |0# v € CY(E\S)NL>®(E), v|og =0}.

Claim: \{(Es) > 4n if § is sufficiently small.

Proof. Our claim is a consequence of Proposition 6 in [Li80] and Theorem 11 in
[Cr80] adapted to our situation.

First we claim that Vol(Es) — 0 as § — 0, where Vol(Ejy) is the Hausdorff
measure of Ejs associated to the metric structure of (Moo, ws). Since S has
codimension at least 2 (cf. Theorem 3.1), we have

Vol(Ey) :/ W

E5\S

Moreover, for any € > 0, we can choose a small neighborhood Ug of § such that
Vol(Us) < € Note that we, is smooth in an open set containing M., \Ug, so if
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4 is sufficiently small, we have Vol(Es\U:) < € It follows Vol(Es) < 2€, so
our claim is proved.

Secondly, we note that it suffices to take v with support away from & in the
definition of A1 (Es). Given any v in defining A1 (Es) with [, [Vv[?wl, < oo, let
~e be the cut-off functions in Lemma 6.10, then -, v have supports away from
S and satisfy

/ V(v )Wl = / (%2 IVu]2 + 2 <oVy,7. Vo> +0° \V’y€|2) wh.
Es Es

Since v is bounded, we have

= 0.

lim
e—0

/ v? |V’y5|2wgO
Es

The Cauchy-Schwartz inequality gives

1
2 2
< (/ v2|v%|2w;z) (/ ﬁmﬁw:@)
Es Es

lim |V(7€U)|2wgo=/ Vo2,
e—0 Ejs E;s

/ <vV7ye,7 Vv > wy
Es

Therefore, we have

So we may assume that v supports away from S in estimating A;(Ej) from
below.

By applying Theorem 2.6 to each (M, w;), we can find smooth Kéahler met-
rics @; on M with Ricci curvature Ric(w;) > p; @;, where limpu, = @, such
that (M, ;) converge to (Moo, ws) in the Cheeger-Gromov topology. Choose
smooth domains Eg C M such that they converge to Es as (M,w;) converge
t0 (Moo, woo ). For any v € C1(M\S) with support away from S, we can find
diffeomorphisms ¢; : Mo, \U — M\D, where U is a small neighborhood of S,
such that v = 0 near U C Ejs and @7 W; converge to ws, ON MOO\U in the smooth
topology. For each 7, put v; = vo qﬁ;l, then by defining v; = 0 on Ef\¢;(U), we
get a sequence of smooth functions v; on Eg converging to v. It follows

A (Es) > inf lim \ (E}),
71— 00

where A\ (E}) is the first eigenvalue of (E},@;) with zero boundary condition.
By Proposition 6 in [Li80], we have

c(n) Cs ) 1/n

M(E;) 2 (Voli(Eg)

where c¢(n) is a constant depending only on n, C ; is the Sobolev constant of &;
for functions with compact support in E} and Vol;(E%) denotes the volume of
E§ with respect to the metric @;. Since Cy; is equivalent to the isoperimetric
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constant of (Ef,@;), Theorem 11 in [Cr80] yields that Cs, can be uniformly
bounded from below by lower bound p; of Ricci curvature, diameter and the
volume of (M, &;). On the other hand, it follows from the result on volume con-
vergence in the Gromov-Hausdorff topology in [CC97] that Vol;(E}) converge
to Vol(Es) as i goes to oo, particularly, Vol;(E}) is small if § is sufficiently small
and 17 is sufficiently large. Thus A (Es) > 4n if § is taken sufficiently small, so
our claim is proved.

There is an alternative way of proving our claim without using those w;. Let
€ > 0 be much smaller than 4, it follows from the second observation above that

A (Es) > inf lgl% M (Es\E.).

Then, by applying Proposition 6 in [Li80] and Theorem 11 in [Cr80] to Es\E.
and arguing as we did for E% above, we get A\ (Es\E.) > 4n if § is sufficiently
small. Thus we give another proof of our claim. O

It follows from (6.23) and the above claim

n/ Fslt? Wl < Cst?.

Since 75 = 1 on Es /5, we deduce from (6.24)
[ a-meten < [ P < ope
Moo Mo \Es ;2

It follows from the Cauchy-Schwartz inequality and the above two inequalities

/ &P wl < 2(/ |%5t|2w:;+/ |(1%)&|2w;g> < Cst?.
Moo Moo Moo

Combining this with (6.22) and dividing by 2, we get

/ (V&P + |t716)°) wi < 2Cs. (6.25)

oo

First we assume that Y is the real part of X. Since & = g o ¢+ — 1o + (¢
and g is smooth outside S U D, we see that t~1¢, converge pointwisely to u
on Mo \SU Dy as t — 0. Letting ¢t go to 0, we deduce from (6.25)

/ lul?w? < C. (6.26)

oo

Moreover, by differentiating (6.20) on ¢, we have

/ uwl, = 0.

oo
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For any ¢ > 2, we multiply (6.21) by 7.&|&:972 and integrate by parts, then
by letting € go to 0, we get

a 12n 2 _ n
[owtapen < 2D g, )

oo oo

applying the Sobolev inequality to its LHS, we get

(f, re

where C is a constant depending only on the Sobolev constant, n and pf. It
is shown in (6.25) that t~1¢& has uniformly bounded L?-norm. Therefore, by
starting with go = 2 and iterating with ¢;11 = 2% for i > 0, we get that for
any g > 2, there is a uniform constant C, satisfying:

n—1
woo) SCq/ e,

oo

/ el < G,

oo

This implies that ¢t ~1¢; converge to u in any Li-norm. To see this, we fix ¢ > 2.
It follows from the Holder inequality that for any § > 0,

/ - 1E, 7w < Vol(Ey)® (/
Es M

So for any € > 0, we can choose ¢ sufficiently small such that

" n—1

< Vol(Es) = (Can )5

g w:;)

/ el W, < 5 (6.28)
Es 3
Since t~1¢&; converge to u outside Do, for ¢ sufficiently small, we have

/ 71, — uftwh, <
M\ Es

By letting ¢ go to 0, we deduce from (6.28)

€
10 < -
/;6|u|w00—3

Putting the above three estimates together and letting € go to 0, we see that
t~1&, converge to u in the L-norm.
By taking t go to 0, we can now deduce from (6.27)

12n ¢
| vtpen < EEEE ] e,
1

[=S)

Wl m

Then, by using (6.26) and the standard Moser iteration, we can easily prove
that u is bounded.
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Each v; is smooth outside S U D, and satisfies:

1 = 1 _

7 wrEs + V=100 = ¢pjwee = z¢fWFS + V=190 ¢;¢o.

It follows that 1, = ¢} + (t, where ¢jwrs = wrpg + /—1 00 ;. Note that
is a smooth function on the whole CPY as well as in ¢. Thus, we have

¢
E |t:0'

Similarly, by taking Y to be the imaginary part of X, we can get a bounded
function v = Y (¢g) + 0,.

Set 000 = u++/—1v and 6 = 0, + /—10,, then 0, = X() + 0 is a
bounded function on My, and ixwpg = ¢/—196 holds on CPYN. Clearly, we
have ixwse = v—10 0. Moreover, we have

u =Y (o) + 0,, where 6, =

/ |VOoo|*w? < 0o and / O wl = 0. (6.29)
Moo Moo

Next we show that 6., satisfies an eigenfunction equation in a weak sense.
Let ¢, be as above and ¢ be any function on M., which can be extended to be
a smooth function in an neighborhood of M, in CPY. It follows from (6.20)
and change of variables that

|ocestan = [ cemean,
Mo Moo

This is equivalent to

/Moo (/Ot Y () o ¢s dS) wh, = fi /Moo ¢ (/Otéds A ¢:w§o> . (6.30)

where € denotes the t-derivative of &.
Dividing (6.30) by ¢ and taking Y to be the real or imaginary part of X, as
t tends to 0, we deduce

/Moo X(Qw =i [ COat

oo

That is, in the weak sense,
—Asgboo = 10 on M. (6.31)

On the other hand, by our assumption on 3 and Theorem 2.6 in Section 2,
there are smooth Kéhler manifolds (M, @;) with Ric(w;) > p; @; and converging
t0 (Moo, woo) in the Cheeger-Gromov topology, where lim p; = fi.

Claim: Any bounded eigenfunction satisfying (6.31) is the limit of eigenfunc-
tions 0; on M such that A;0; = —\; 0; with im A\; = i, where A; denotes the
Laplacian of @;.
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This is well-known if (Mu, weo ) is smooth since the spectra depend continuously
on smooth metrics on a manifold. Clearly, in view of Lemma 6.10, the arguments
for smooth metrics apply to our case. Identical arguments were also used in my
previous works. For the readers’ convenience, we include a proof here by using
Lemma 6.10 and standard arguments.

First we need to consider only real eigenfunctions since A; are real operators.
Secondly, since (M, ®;) has uniform Sobolev inequality and smooth away from
S, we have: For any {u;} with —A;u; = p;u; and ||u;]|2 = 1, by taking a
subsequence if necessary, u; converge to a function u with —A,u = pu and
|[ul|2 = 1. Let A; be the set of all such u, then it is a subspace of A; which
consists of all bounded eigenfunctions with eigenvalue fi. If Aﬁ # Ap, then there
is a bounded u € Ay such that

2,.n n 2, n
/ uwl =1, / wugwh, = 0, / [Vul|=wl,
oo oo oo

where {ug }1<q<k is an orthonormal basis of 1~\ﬁ. Let 7. be the cut-off function
in Lemma 6.10 Then v.u has its support away from the singular set S and

Hs

. 2 n _ = . 2. . n __
lim y IV(veuw)|* wl, = i and lim y (Yeu)* wl = 1.
Recall that S is the singular set of w... Define T5(S) as the set of points in CPN
whose distance from § is less than 6. Then there are §; — 0 and diffeomorphisms
@i+ Moo \T5,(S) — M such that ¢fw; converge to we, on Moo \S. It follows that

there are ¢; — 0 such that u; = (y,u) o (;Si_l extend smoothly to M and

lim |Vu;[* & = i and  lim ui o = 1.
1—00 Moo 1—>00 Moo
For each a, there are eigenfuctions u, ; of w; which converge to u,, then for each
¢ sufficiently large, w;,u1,4,- - , ur,; generate a space A; of dimension k4 1 such
that )
~n
Jur VO &
sup o —
n
vea(oy Sy VP

for some v; — 0. It follows that there are eigenfunctions ug; with eigenvalue
not bigger than i + v; such that it has L%-norm 1 and is orthogonal to u, ; for
a=1,---,k By using the Bochner technique, we have the eigenvalue for ug;
is not less than u;. By taking a subsequence if necessary, we may assume that
up,; converge to an eigenfunction ug # 0 in /~\ﬂ which is orthogonal to u, for

<p+v

a=1,--- k. A contradiction! Therefore, our claim is proved.
Let 6 be a bounded function satisfying (6.31). By the above claim, it is
the limit of eigenfunctions 8; on M such that A;0; = —\; 0; with lim \; = [.

Applying the Bochner identity, we get
/ [VO190,2 & < (N — Mz‘)/ 00:> &) = Ni(Ni — pa),
M M
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where V%! denotes the (0,1)-part of the covariant derivative of @;. It follows
that V9100 = 0, so 96 induces a holomorphic vector field Z outside the singular
part S of (My,weo). If 0 is real, then the imaginary part Y of Z is a Killing
field. Since (6.31) is a real equation, we conclude that 7)., is the complexication
of a Lie algebra of Killing fields.

Finally, we want to extend Z to the ambient space CP™. This can be done
as follows: It suffices to extend Y. Fix a small € > 0 such that T.(S) is covered
by finitely many open subsets Vi, -- -, Vj satisfying: (1) V; is isomorphic to a
ball in CV and (2) For each 4, there is a section o; in H'(Meo, K}/ ) such that
¢ < ||oilloo < 7t on M, NV for some ¢ > 0 independent of i. We integrate Y’
to get a family of biholomorphic maps ¢(¢) from a neighborhood of M \T:(S)
into Mo, \S, where || < ¢ for some 6 = §(e) > 0. Note that ¢(0) = I. Since Y
is a Killing field, wherever ¢(t) is well-defined, it is an isometry of the induced
Hermitian metric Hy on K];[io. Given any o € HO(MOO,KA}Q), o(t) o is a
bounded and holomorphic section of K J\_/Ii over Moo \T¢(S). If E is any subspace

of CPY of complex dimension N —n + 2 with (at most) finite intersections with
S, then Mg = M., NE is a complex normal variety of complex dimension 2 and
Mg NT.(S) is compact. For each i, f; = ¢(t)*c/o; is a bounded holomorphic
function on (M \Te(S)) NV, so by the Hartogs” extension theorem, f; extends
to be a bounded holomorphic function on MgNV;. It follows that ¢(t)*o extends
to a holomorphic section of K 1\742 over Mg\S. Since F is arbitrary, we can easily
deduce that ¢(t)*c extends to M, \S. Thus, ¢(t) lifts to an isomorphism of
H O(MOO,KJ\}{}c ), or equivalently, ¢(¢) is the restriction of an automorphism in
G = SL(N + 1,C). Differentiating ¢(t) on t, we see that Y, consequently Z,
extends to a holomorphic vector field on CPY .33
Hence, 1o is reductive, and consequently, this lemma is proved.
O

By Lemma 6.9 and a known result in algebraic geometry (cf. [Do10]), we can
find a C*-subgroup Gy C G which degenerates (M, D) to (Mo, D). Then we
will get a contradiction to the K-stability as follows: Let X be the generating
field of Gg. As observed in [Doll] and [Lil5]), adapting arguments from [Fu83],
we can define the Futaki invariant fys_ 1-g)p.., also referred as the log-Futaki
invariant, for conic K&hler metrics on M., with cone angle 273 along D
(B € (0,1)). Furthermore, if there is a conic Kihler-Einstein metric with angle
27 along Do, then fr;  (1_5)p. vanishes. Note that though we may not be
smooth along D in our case, we can still prove the vanishing of fy, -5
by adapting the arguments from [DT92]. It follows directly from the definition
of the twisted Mabuchi energy (see [LS14]):

(B = B1) My () = (1= 1) My a(¥r) — (1= B) My (¥7),

where 1 — A~ < 31 < 3 and ¥, is given in (6.4) for 7 € Gg. Taking derivative

33If Boo < 1, Do, being the singular set of weo, must be preserved by the isometries
generated by Y. Hence, Z is tangent to Doo.
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in 7 and letting 7 go to oo, we get

(B—=51) fae (X) = = (1= B) far 1-prypo (X).

There is a corresponding conic Kéhler-Einstein metric with angle 273, if £, is
sufficiently close to 1 —A~* (see [LS14]). So M,,, z, is proper and consequently,

Re(fMo,(1-51)Do (X)) = 0.

Hence, we get
Re(fa, (X)) < 0.

This contradicts to the assumption that M is K-stable and not biholomorphic
to Ms. Thus 8 € F and Theorem 1.1 is proved.

We end up this section with a proof of Lemma 6.10. Put

B 1 n—k—1
Ik:/ \/18F/\8F/\w1/\~~~/\wk/\(€wps> R (6.32)
Moo

where F' = log(—log||7o||3) and k= 0,--- ,n — 1.
First we observe

B 1 n—1
Moo

To see this, we compute

D7y

oF = ,
Too (—log | |TOO||(2))

where D denotes the covariant derivative. Hence, we can write

v—1
1y, = / g DTOO/\DT0202 /\w;§1~
Moo |Too|? (— log ||7'00||0)

It is known that the integral on the right is finite and is because the Poincaré
metric on the punctured disc has finite volume. To see it, we choose a resolution
7 : M + My, such that 7—(7~1(0)) supports in a normal-crossing divisor with
irreducible components D, (@ = 1,---,m). As usual, we denote by [D,] the
line bundle corresponding to D,. Then we have sections f, of [D,] such that
D, ={fo=0}C M and 7o o = fl 7’;’", where k, > 1 are multiplicities
of 7 o along D,. Furthermore, we can have Hermitian norms || - ||, for [D,]
such that for some constant ¢ > 0,

m
‘fa”a <1 and 7T*||7'oo||(2) =c H ||fa||ika on M.

a=1
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Without loss of generality, we may assume that ¢ = 1. 3* Then we have

- < V—1D7 A D7 > _ VL, ka fi* 7 Dfa) AN (2 Ka fa Dfa)
7o |? (= log [I7c[[3)% ) [, [fal?e (=22, ka logllfull2)?

Using the Cauchy-Schwartz inequality and the fact that —log||f.||? > 0, we
can deduce from the above

/ V—=1D7s N D7
M

~ |70l? (= log [|7sc|I5)?

/\w?,gl <m

- \/lefa/\Tﬁ * n—1
>,

NT Wre .
1 1 fal® (=log||fall2)? s
A straightforward computation shows

/ V-1Df, ANDf, w n—1

AT w <oo, a=1,--,m.
wr |fal? (—1log||fallZ)? s

Then (6.33) follows.
We will prove Lemma 6.10 by induction. Suppose that we have proved for
i<k

I, <o and V; = Vg, (6.34)

1 n—i
Vi:/ wl/\---/\wi/\<wFS> .
M L

[=S)

where

We need to prove (6.34) for k. Using the induction assumption, we have

Vi = Vi
B 1 n—k
= lim Yewi A Awg—1 AV—=100Y; A <oJFS>
e—0 My K
B 1 n—=k
= lim Ve V=100V Nwi A+ ANwg—_1 A (wps>
e—0 Moo £
By a direct computation, we have
_ ker! _
Vo100, = — B (L eif + %) V=10F AOF. (6.35)

_IOgHTOOH%

Since 9, is bounded, we can deduce from this

’(/Jk \/—185’)/5/\(4}1 /\"'/\wk,1 /\wggk S CE(V}C,1 + Ik71)~
M

Thus the integral on the left-handed side above converges to 0 as € goes to 0,
so we have Vi, = V1 = V§ < 0.

341t is clear from the definition in (6.32) that I being finite or not won’t be changed by
replacing || - ||o with an equivalent norm.
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It follows from (6.32) that

B B 1 n—k—1
I, =1, —lirr(l) YeOF NOF Awi A+~ Awg—1 A OOy, A <£wFs> .
e—

Moo

Denote by I(e) the second term on the right-handed side above, then

n—k—1
i(e) = 1y, 00 (7€8FA5F) Awi A Awp—1 A <2wpg> . (6.36)
Moo

A straightforward computation yields

90 (v OF NOF) = —eif OF NOF NOOF — ~. 00F N OOF.
Note that ¢/ = k¢ and
V—109F = % — V=10F A OF.
—log||7e|[5

It follows

k(e —27.) V—10F A OF ANwrg Ye k2 wps A wps
—log |73 (—log |7 l[3)?

90 (v. OF A OF) =

Thus, by the induction assumption, we can derive
lim I(e) = 20 Iq — ()1,
e—0 ’ ’

where

n—k
= = 1
Ik,l = / 71/% V—10F ANOF ANwi A+ ANwg_1 A (KWFS>
Moo

_IOgHTOOH(Q)

~ wk: 1 n—k+1
Ino = / — Wi A AW A (wFs) .
' M. (—log|7l[5)? ¢

Since 9y is bounded, we have for some constant C' > 0
Tei| < CImy and |Ia| < CVig.
Hence, by the induction assumption,
I =Ly + 20T, — ()T < oo

Note that dv. = e7f OF and || < 1, then, in view of (6.32), we have

B 1 n—k—1
/ \/—18%/\8%/\w1/\-~-/\wk/\<£wps) < €214
Moo

Since I is finite, we see that the integral on the left-handed side above tends
to 0 as € goes to 0, and consequently, Lemma 6.10 is proved.
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7 Appendix 1: The proof of Lemma 5.8

In this appendix, we complete the proof of Lemma 5.8. We will adopt the
notations in Section 5, particularly, in the proof of the simple case of Lemma
5.8. If B = 1, then there is nothing to be proved since the singular set S, is
of complex dimension at least 2. So we may assume that 8., < 1. By using (2)
of Lemma 5.5, we get a decomposition S, = S? U S, satisfying: S, is a subcone
of complex codimension at least 2 and any y € S? admits a tangent cone C, of
the form C"~! x C;. Furthermore, C; is the standard 2-dimensional cone with
angle 273, so Lemma 5.8 has been proved for such a Cy.

First we have z; € M and r; > 0 such that (M, r;Zwi, x;) converge to the
cone (Cy, gz, 0). This implies that there are limd; = 0 and diffeomorphisms

where d;(-, D) denotes the distance from D with respect to r; 2w;, satisfying:
I 2 $w; — wallos(v ey < O (7.2)
We may further assume that ¢; = r; 2 are integers.

Secondly, by our assumption, there are integers k; = 5;2 such that (Cy, k92, y)
converge to (Cy, g3,0), where C, = Ccr1x C,, with the flat conic metric g5 in the
case of Lemma 5.8 already considered. Therefore, there are diffeomorphisms

9;:V(y;it) CCy = C\Ss (7.3)
satisfying:
2 0k 1
55 *95wa — wallos v gs—y < 7 (7.4)
where wjz is the Kéhler form of g3.

It follows from (7.1) to (7.4) that for any § > 0, there are js and i5 such
that for j > js and i > is, we have ¢; - ¥, : V(y;571) — M\T5, (D) satisfying:

[1k;ti 0565 wi — wallosw g1y < 0. (7.5)

Consider C, x C as a bundle over C, with the norm e~ 1# 1P =1znl* |- 2. Any

holomorphic function f on C" can be regarded as its section since C, is bi-

holomorphic to C*. Set fy = ap, f1 = 121, , fn = @12, where a, > 0
(k=0,---,n) are chosen such that
/ |fk|26—(|z'\2+|zyz|25)wg’ - 1. (7.6)
cr-lxcy,

Clearly, oy are uniformly bounded. Applying Lemma 5.7 to each f;,3° for j
and ¢ sufficiently large, we get an isomorphism 1); ; from C, x C onto K,

over V (y;j 1) satisfying:

(1212 Zn 283
i (f)l1? = [fel? e UPH=)and 1V jlloaqvpgy) < 6 (7.7)

35Here we replace Moo by M and ¢ by <;~51 -¥;. In fact, we only need an easy case for Lemma
5.7 since the tangent cone Cy is simple.
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Note that Lemma 5.8 has been proved for simple cones like C,, so we can apply
the arguments for proving the partial C°-estimate in Section 5 to construct
holomorphic sections Sf; of K 9% over M such that

€
sup ()7 (S5 = Ful < 5 (7.:8)
V(y;3=1)NB1o(0,93)
where € can be as small as we want so long as § is sufficiently small. Moreover,
by Corollary 4.2, we have
IVSE |l < C, (7.9)
where || - ||; denotes the Hermitian norm associated to w;. Note that C' always

denotes a uniform constant. Hence, for certain ¢ > 0 depending only on «q, we
have

159,1li = ¢ on §;(9;(Buo(o,95))). (7.10)
Define a holomorphic map Fj ; : ¢:(9;(Bio(o, g95))) — C" by

Szlj(x) Szn](x)
;= (ng(x)’." ’ng(x)> . (7.11)

Then Fj; - ¢; - 9 converge to the map (fi/fo,-- , fu/fo) and in the smooth
topology outside the singular set {(z’,0)} as j,i — oo, therefore, by taking j
and ¢ sufficiently large if necessary, we have

Fij(6i(0(2)) = (fi/fo,-++ s fnl fo) (Z)’ <e VzeUj, (7.12)

where _
Uj = {(2',2a) € Bio(0,95) | |zal® > 57"} € V(y;57").

We may assume Bgs;r, (74, w;) C ¢:i(0;(Bio (o, 95)))- It follows from (7.12) that
for e sufficiently small and 7 sufficiently large, F; ; is a holomorphic map from
Bss;r, (74, w;) onto its image which contains Bg_ (0, g3).

By the derivative estimate (7.9), we get

sup [|dF jllw, < C (s )2, (7.13)
Bss ;v (Ti,wi)
This is equivalent to
F'::J wo S C (Sj T‘i)72 Wi, (714)

where wy denotes the Euclidean metric on C™.

Next we claim: For j sufficiently large, F; ;j(D N Bz, (z5,w;)) converge to
a local divisor D; C C™ as i goes to oo. It will be proved by applying the
Bishop theorem. For this purpose, we need to bound the volume of F; ;(D N
Brs,r,(z5,w;)). Since (CI,SJQQI,y) converge to the standard cone C"~' x C;,
with the metric gg, for j and i sufficiently large, F; ; maps D N Bgs,p, (i, w;)
into a tubular neighborhood:

Tse = {(z,20) | 12'] <8, [2n| < €}
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This implies that the intersection of complex line segments {(2/, z,) | |zn| < 6}
with F; ;(D N Bg,r, (74,w;)) is independent of 2’ with |2/| < 7.5. Using the
slicing argument in [CCT02] 3¢, one can show that for each 2’ with |2/| < 7.5, the
complex line segment {(2’, 2,,) | |z,| < 6} intersects with F; ;(D N Bgs;r, (i, wi))
at exactly m points (counted with multiplicity), where (1 — 8) = m (1 — ).

Let 77 : R — R be a cut-off function satisfying: 7(¢) = 1 for ¢t < 56, 7(t) = 0
for t > 60, || <1 and |7”| < 2, then we have

/ ()
Fi (DN Bgs 7, (Ti,w3))

< (7 + (n = 1) |z *(7 + |/ P*7")) (d2" A dZ')" 7

/Fi,j<DmBSS,,‘i<m,w>>

It follows

/ wip™t < 200mm. (7.15)
F; j (DﬂB7,4sti (xi,wi))

Note that the limit of D coincides with S, modulo a subset of Hausdorff codi-
mension at least 4 under the Gromov-Hausdorff convergence of (M, r; %w;, x;)
to (Cy,ws,0).%" It follows that Fi j(S; N Brs, (y, g2)) coincides with D;.

The estimate (7.14) immediately implies

*  n—1 e \—2n4+2, n—1
/ Fi jwq < / (sj7i) wi -
DNBés ;r; (xi,wi) DNBes jr; (xi,wi)

Applying the standard monotonicity to subvariety F; ;(D), we have

n—1 * n—1
1< / Wo < / Fl-ijo .
F; ;(D)NB4(o,wo) DNBss jr; (2i,wi)

Then, letting ¢ go to oo, we can easily deduce from the above
2n—2 < 2n—2 F* n—1 <M S B 716
Sj = Sj oo,jwo = 27L—2( z N 58j(yagx))a ( . )
S2NBss; (Y,wa)

where Ma,, 5 denotes the (2n—2)-dimensional Hausdorff measure corresponding

to g..
For convenience, we summarize the above as follows with one extra property.

Lemma 7.1. For any € > 0 small, there is a j. such that for any j > je, the
Lipschtz map Fuo j maps Bz, (y, gz) into Bryc(0,93) satisfying:

(1) Its image contains B7_c(0,93);

36We also refer the readers to the proof of Theorem 3.2, C4. In fact, it is easier here since
for generic 2/, all the intersections are positive and transverse.

37Clearly, the limit lies in Sz. On the other hand, by [CCT02], there is no singular point of
C. outside the limit of D for which there is a tangent cone of type C*~1 x C?’JA
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(2) Fuoo j(Se N Brs,;(y,92)) is a local divisor Dj C Ty ¢;

(3) For any 6 > 0, there is an v = v(d) such that F;)}j(TG,l,) C T5(Sz) N
B?SJ' (yagw)

Proof. We have shown the validity of (1) and (2). For (3), we can prove by
contradiction. If not true, then F;)}j (Dj N Bgs5(0,95)) has at least two dis-
tinct components, one lies in S, while another is not. This implies that for
i sufficiently large, the pre-image Ffjl (Fi;(D) N Bss(0,95)) has at least two
components. On the other hand, for j and ¢ sufficiently large, when restricted
to Bios,;r, (zi,wi)\T5(D), Fj ; is biholomorphic onto its image. It follows from
(7.12) and (7.13) that F; ;(p) = F;;(p') for p,p’ € Bios,r, (7, w;) only if d;(p, p')
is sufficiently small. This implies that Ffjl (2) is either a point or a subvariety
for any z € Bg(o,g95). By (7.10), Bios,r,(7i,w;) lies in some CN', where N’
may depend on i,j. Thus F;; is one-to-one on B, (z;,w;). This leads to a
contradiction, so (3) is proved.

O

Next we observe: For i,j sufficiently large, there are uniformly bounded
functions ¢; ; on Bss,r, (i, w;) satisfying:

(sjri)_Qwi = \/—1 85%’]' on Bgsjri(l'i,wi). (717)

This is because [|S7;||; is close to an uniform constant for j, i sufficiently large.
A consequence of this observation is that the volume of D N Bz, (z;,w;) with
respect to (s;7;) 2w; is uniformly bounded. To see this, we recall a well-
known fact: If T is a positive, d0-closed (1,1) current on B,(0,wp), then for
any bounded function ¢ on B,.(0,wp), we have

(TLBR_x(0,wp)) (00¢) < C, sup o] | T(wo),
Br(o,wo)
where C,; depends only on x. 3® For i, j sufficiently large, we have
F; j(Brs,r, (i, wi)) C Brye(o,wo) C Bra—c(o,wo) C Fij(Bras;r,(Ts,w;)).

May assume that 3ne < 1. Put

T.(¢) = EAWITI AwETATY

/Fi,j(D)ﬁBSam(O’wo)
where k = Sin and a =1,--- ,n — 1. Then, applying the above fact to currents
T, and using (7.15), we get

/ wit < O (syr)* R
DNBrsr; (z,wi)

38TLU denotes the restriction to U and this can be easily proved by using a cut-off function
and integration by parts.
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Letting ¢ go to oo, we have
Map,—2(S: N Brs, (y,ws)) < Cs7"72 (7.18)

For each y € 8Y, we set s(y) = s; for a sufficiently large j such that Lemma 7.1
holds. Define U to be the union of all such balls Bg(y)(y, w:), S; = S; NU and
S = 8;\S., then S, is closed and contained in S,. It follows from (7.18) and a
simple covering argument that for any R > 0 and open neighborhood B of S,
there is a constant C'r p such that

My, —2(S; N Br(o,w,)\B) < Cr.B- (7.19)
The following is the key lemma to our proof of Lemma 5.8.

Lemma 7.2. We adopt the notations above. Assume that (1) & : R — [0,1]
is a smooth function with £(t) = 1 for any t > 8¢ and (2) f is a holomorphic
Junction on Fu j(Brs;(y,92)) such that |f(2',zn)| > |2n| whenever |z,| > 8e.
Then there is a uniform constant C' such that

g [ e R,
Bes; (y,92)
< C / V=10h AOh A (d2' NdZ')" 7, (7.20)
Foo,j(B75j (¥,92))

where h(2', z0) = £(1f 22, 20)-

Proof. It suffices to prove the corresponding inequality for each F; ; and then
let i go to co. As above, let 77 : R — R be a cut-off function such that 7(¢) = 1
for ¢ <40, 7j(t) = 0 for ¢t > 46, |7'| <1 and |}”| < 2, then we have

V=1007(|7'|?) < 200ndz’ AdZ.

By our assumptions (1) and (2), we can show that 7j(|2’|?) |dh|? vanishes near
the boundary of F; j(Brs,r,(2i,w;)). It is easy to see

Oh A OOh = 0.

Using these facts, (7.17) and integration by parts, we can deduce

(s | () V(b Py 2,
B7s7>7‘7> (z4,wi)

2]

n/ n(|2'[*) V=10h N Oh A (V=100(pi ;- F; )"
Fi j(Brs;r; (xi,wi))

< C/ V=10h ABh A (d2' AdZ)" L.
Fij(Brs;r; (25,03))

Then the lemma follows by letting i go to co.
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Now we complete the proof of Lemma 5.8. Let € be given in Lemma 5.8.

Fix a small ¢y > 0, since S, is closed and has vanishing Hausdorff measure of
dimension strictly bigger than 2n—4, we can find a finite cover of S.NB.-1(x, g.,)
by balls B, (ya,9z) (a =1,---,1) satisfying:

(i) yq € S, and 2r, < €o/l;
(i) Xpran ™ < L

We denote by 77 a cut-off function: R — R satisfying: 0 < 7 < 1, |77/ ()] < 2
and
7i(t) =1 for ¢ > 1.6 and 7(¢t) = 0 for ¢t < 1.1.

Set x = [, Xa, where

d a )
Xa(y) = 7 <(y,y)) if y € Boy, (Ya,9=) and xq(y) = 1 otherwise.

Ta

Then x vanishes on the closure of B = U,B,, (Ya,9,) which contains S, N
Be-1(z, g ), furthermore, x satisfies

/c |Vx[2w! < l/B ( ) IVXa|? Wl < C1 Z T2 < Cey,  (7.21)
x 2rq (Za 9z a

where C'is a uniform constant.

There is a finite cover of S, N Be-1(x, g,)\B by balls Bgs, (yb, g.) for which
Lemma 7.1 holds (b = 1,---,N). Choose smooth functions {(;} associated to
the cover {Bgs, (Yb, g2)} satisfying:

(1

)
(2) supp(¢p) is contained in Bgs, (Yp, gz );
(3) >y & =1 near S, N Be-1(x,9,)\B.

Then {(p},1 — >, ¢ form a partition of unit for the cover {Bss, (s, 9.)} and
B (x,gs)-

As before, we denote by n a cut-off function: R — R satisfying: 0 < n < 1,
[7'(t)] < 1and

0<G <1, |V < sl

n(t) = 0 for t > log(—1logd®) and n(t) = 1 for t < log(—log?).

For each b, let [}, be the map from Brg,(ys,9.) into Bryc(0,95) and Dy C
Br1c(0, gg,) be the divisor given by Lemma 7.1. Let v be given in (3) of Lemma
7.1 for any small 8. It is clear from its proof that v can be chosen independent of
b. May assume that 10e > v and f, be a local defining function of D, satisfying
(2) in Lemma 7.2. We define a function vz, on Brs, (Y, g.) as follows: If

[fol(Fo(y)) > €/3, put vep(y) = 1and if |fo[(F(y)) < € put

Yes(y) = n (log (— log (W))) . (7.22)
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For any ¢, by choosing ¢ sufficiently small, we can deduce from Lemma 7.2

/Bﬁsb (Yv,92)

Moreover, by (3) of Lemma 7.1, we may have vz (y) = 1 if d(y,Sz) > €. Now
we define

2wl < e st (7.23)

7e(y) = x(y) 1—2@ +Z<b Y)ves(y (7.24)

Then v:(y) = 1 whenever y is outside B and d(y,S;) > €. Also v; vanishes
in a neighborhood of S,.. It follows from (7.24) and (7.21)

/ Vaeal < © eo+NZ/ (G =P ).
B._1(0,9) Besy, (Yv,9z)

By (7.23) and (7.16), we have
/B ( ) |V(Cb(]— - 75,b))|2wg S 466 827#2 S 466 M2n72(81 N B5Sb(ybvgz))'
65y, (Yby9az

Set U’ = Uy Bss, (Yb, gz), then B’ = B\U’ is a neighborhood of S8, N Bz-1(x, g..).
It follows from the above two estimates and (7.19)

/ [VAel?wi < C (€0 +4N? Cer pr ) -
-1 (0 ga‘)

Thus, we can complete the proof of Lemma 5.8 by taking €y and then ¢, suffi-
ciently small.

8 Appendix 2: A previous result of Tian-Wang

In this appendix, for the readers’ convenience, we give an outlined proof of
a result in [TW12] on almost Kéhler-Einstein manifolds. This is needed for
proving the partial CC-estimate when cone angles 273 converge to 27. For
simplicity, we need to consider only the following situation: 3° Let (M,&;) be a
sequence of smooth Kéahler manifolds with Kéhler class 2meq (M) and satisfying:

Ric(@;) > piw;, where limpu; = 1.

Theorem 8.1. Assume that (M,&;) converge to (Ms,ds) in the Gromov-
Hausdorff topology. Then My, is smooth outside a closed subset S of complex
codimension at least 2 and the distance doo s induced by a Kdhler-Finstein
metric wee on Mo \S. Moreover, any tangent cone C, of My, is Kdihler-Ricci
flat outside a closed subcone S, of complex codimension at least 2.

39 All the results in this appendix are taken from [TW12]. I thank B. Wang for agreeing to
my doing so.
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The rest of this section is devoted to an outlined proof of this theorem. First
we observe that the sequence (M, ;) is almost Kahler-Einstein in the sense of
[TW12] since we have

IA

/ |Ric(@;) — @i| @ n/ (Ric(@;) — widi) NP1+ (1 _/ii)/ op
M M M

= 2(1—pw) /wa — 0. (8.1)

The following is crucial and a special case of Proposition 3.1 in [TW12].

Proposition 8.2. For any a,r € (0,1], there are § = 6(n,«) and € = e(n, )
with the property: If (M,w(t)) is a Ricci flow:

LIV ) (8:2)

and satisfies:

Vol(B, (x, w(0)))
r2n

Ric(w(0)) > 0, and > (1—-9)cy, (8.3)

then for any x € Ber(x9,w(0)) and t € (0, (er)?], we have
Vol(B (z,w(t)) > knt", |Rm|(w(t)) < at™ + (er)7?,
where Kk, s a uniform constant and Rm denotes the curvature tensor.

Proof. Tt suffices to prove the curvature estimate. The volume bound follows
from this curvature estimate.

If this proposition is false, then we have sequences d, e — 0, (M, w (1))
satisfying (8.2) and ) € M}, such that (8.15) holds while the curvature estimate
fails. By scaling, we may assume that r = 1.

Following the proof of Perelman’s pseudo-locality theorem (Theorem 10.1 in
[Pe02]), we can find ug > 0 with compact support in By (2, wg(0)) satisfying:

/ ui =1 abd Flug) < —n, (8.4)
Bi (zk,wk (0))
where
Fluy) = / {2|Vuk\2 — 2u} loguy, — 2n (1 + log \/27r> ui} . (8.5)
Bi(zr,wk(0))
Then by a result of Rothaus [RO81], we get a minimizer oy, of F satisfying:
—Apr — prloger — n (1 + log v 27‘1’) Ok = Ak Pk (8.6)

Here 2\, = F(pr) < Flug) < —n < 0. By using the Sobolev inequality,
we can easily show that |A\gx| < C for some uniform constant C'. On the other
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hand, using (8.6) and the Moser iteration, we can bound [|¢k||co. Since the
Ricci curvature of wy(0) is positive, by the gradient estimate of Cheng-Yau, we
have

[Vor|(x) < Cy(n,d(x, 0B (zg,wr(0)))), where x € By(zg,wr(0)). (8.7)

Without loss of generality, we may assume that (Mg, wy(0),zx) converge to
(Moo, Woo, Too) in the Gromov-Hausdorff topology. In fact, by the condition on
volume ratios, Mo = R?" and we is the Euclidean metric. It follows from
the above that by taking a subsequence if necessary, ¢y converge to a locally-
Lipschtz function @, on By (Zoo,Weo) C M.

Next, we show

Claim: ¢, can be extended to be a continuous function on Bj(Zeo, Weo) With

<Poo|8Bl(woo,ww) = 0. (8.8)

It suffices to show that lim, o [|¢eo||z (B, (z)) = 0for arbitrary z € 0B (7).
Here we denote by B, (z) the ball in M., with center z and radius 7.
For any z € 0B (zs). Suppose z € By (zk,wr(0)) and lim z;, = z. Put

Mgy = sup Ok — Oky  Yar = Mg — ©Ok.

inf
Bua(zk,wi (0)) Ba(zk,wi(0))

Note that by trivial extension, we can regard ¢y, as defined on Mj. Using (8.6),
in the sense of distribution, we have

(—a = (n+nlogvVam + A ) )tk = —Cs, (8.9)

where C} is a uniform constant independent of k. Then, by the standard Moser
iteration, we obtain

(Qd)izn/ Var < Cs ( inf  tak + d2). (8.10)
Bag(zk,wi (0)) Ba(z

kswi (0))
It is not hard to see that
Vol (Bag (2, wi(0)\B1(xk, wr(0))) > ¢,107"(2d)*"
and

inf = M- — M.
B oy Pk 2k

Plugging these into (8.10), we get
107nCnM2d7k < Cy (Mgd,k — Md’k + d2)
This implies for some v € (0,1),

Mgk < vMagp + d. (8.11)
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Let d = 27 (i > 1), iteration of (8.11) on i yields

. ,yi—l _ 4—i+1

My-i) < 471 M A —
2=k Y 1.k + 4(4771)

Since ||k || Lo (By (zr,wi (0))) < C1, letting k — oo, we obtain

A=l g4it]

T (8.12)

ool (B, i (z)) < C1y" ™" +

Then our Claim follows.

By the standard arguments, we can prove that on Bj(Zs), @oo Satisfies
—APoo — Poo l0g Yoo — (n + nlog V2w + )\OO) Yoo = 0. (8.13)

Consequently, poo € C°(B1(Zs0))-
Now we can derive a contradiction. In fact, by trivial extension, we can
regard o, € Wy ?(R2"). Then, by (8.13), we have

/ (|V(Poo|2 - <pc2>o IOgQOOO - n (1+10g v 271-) (pio) = )\oo S -n < 0.
R2n

This contradicts to the Logarithmic Sobolev inequality for R?" (cf. [Gro93])
which implies

/ (lV%oI2 — 2 logpee — 1 <1+10g \/ﬂ) gago> > 0.
R2n

Therefore, our proposition is proved. O

Corollary 8.3. There is a § = §(n) with the property: If (M,w(t)) is a nor-
malized Ricci flow:
Ow(t)
ot
where Ay is a constant with || < 1. Suppose that

= Xow(t) — Ric(w(t)) (8.14)

Ric(w(0)) > 0 on Bj(zg,w(0)) and Vol(Bj(xo,w(0))) > (1 —46)c,. (8.15)
Then for any x € Bz (x0,w(0)) and t € (0,26], we have
Vol(B (z,w(t))) > kpt™ and |[Rm|(w(t)) < ¢t

This follows from applying Proposition 8.2 to

log(1 — 2Xot)

(:J(t) = (1 — 2)\()f)0.)( _/\0

)

which is a solution of Ricci flow.
Next we estimate the change of distance function along (8.14).
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Proposition 8.4 (Theorem 4.1 in [TW12]). Let 6 and (M,w(t)) be as in last
corollary. Then for any x1,z3 € B1 (0,w(0)), we have

| — CoE™¥ < dy, 5 (21,22) < | + ClETE, (8.16)

where | = dy, (71, 22), Co,C are uniform constants and E is defined as

28
E = E(5) = / / IR(w(t)) — ndo|w(®)" A dt.
0 B%(:fco,w(O))

Proof. We will sketch its proof and refer to [TW12] for more details. We will
always denote by Cp, C uniform constants.
First we observe that for any x € By (zo,w(0)) and s € (0, 4],

IRic(w(s)) — Ao w(s)|(z) < Cs~ "2 E(s)2. (8.17)

This follows from the curvature estimates in Corollary 8.3 and applying Moser’s
iteration to the following curvature evolutions on Bj(zg,w(0)):

a\h| 1
- < —

o < Al (R |nl,
OH 1 )

where h(t) = Ric(w(t)) — Aow(t) and H = tr,¢)h(t).
Secondly, we recall an estimate of R. Hamilton: If Ric(w(t))(x) < K for any
x in By(z;,w(t)) (i = 1,2), then
ad (.’ﬂl, 1’2) A _
% > Eodw(t)(xl,xg) — (Kr +r 1).
Let t; € (0,0] be the maximum of ¢ such that B ;(x;,w(t)) C Bs/u(wo,w(0))
(i =1,2), then by Corollary 8.3, for any t € [0,;], we have

dw(t)(ah, 1‘2) > dw(O) (xl, 332) —Cy \/E (8.18)

This implies that t; = §. On the other hand, by (8.17) and integrating along
(8.14), we get

du(5) (21, 22) ) ‘ —(n+1) L1
log | —————= < Cpt Ez. 8.19
s <dw(t0)($17l‘2) =0 (8.19)

Choosing #o at the order of E7575, we can deduce the LHS of (8.16) from (8.18)
and (8.19).

In the following, we show the RHS of (8.16). The idea is roughly as follows:
The LHS says that the identity map is an almost expanding map, but it is also
an almost volume preserving map if E is sufficiently small, so it should be also
an almost isometry. Let us examine it more closely.
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Assume that By, (z,w(0)) be the largest geodesic ball which is contained in

1

By (z1,w(0)) and disjoint from B;_.(z1,w(d)), where ¢ = CoE2@F3. By the
volume comparison and the smallness of the change of volume along (8.14), we
can deduce

Vol 5y (Br, (z,w(0))) < Voly,o)(Bi(z,w(0))) — Vol (Bi—c(z,w())) + E.
It follows that whenever C' EZ0n75 << [,
1
ro < (\Vl_l —1+Cl ) | + ¢,

where

Vol s) (B, (2, w(6
Vi :inf{ oly(5)( 2(15 w(d)))
/rn

| B, (z,w(d)) C B

1
2

(20,0(0)), 7 gz}.

By the definition of ry, we can find x5 € Bs,, (22, w(0)) N Bi—.(x1,w(d)). Then
we claim
dysy(r2,23) < Cry, where 71 = max{3¢,7o}.

This claim can be proved by a simple covering argument: Join x5 to x3 by
minimal w(0)-geodesic v and cover it by N balls Ba,, (z;,w(d)) such that z; €
and B, (z;,w(d)) are mutually disjoint. Clearly, all B,, (z;,w(d)) are contained
in Bs;, (2,w(0)), so we have

NV ri™ < Volys) (Ui By, (25,w(6))) < Volyoy(Bsy, (22,w(0))) + E.

Then N is bounded from above by C(1 + Er{ m) and consequently, our claim
follows. It follows from the above claim and the estimate on rq

dy5y(71,22) < C <|Vl_1 -1

4 [0 Em) l (8.20)

whenever E << [2(27+3),

Now we can conclude the proof. Since the curvature of w(d) is bounded on
Bs4(z,w(0))), there is a £ = £(n, ) such that A, > 1 — Cr? for any r < . Tt
follows from (8.20)

dw((g)(yl,yQ) S 7‘(1 + C’I“% + Tﬁ Em)

whenever y1,y2 € By/2(z,w(0))) and dy,0)(y1,y2) < r < £ Then our proposi-
tion follows from this by a simple covering argument. O

Now we return to the proof of Theorem 8.1. Consider the normalized Ricci
flow with initial metric @; as in Theorem 8.1:
(9&)2‘ (t)
ot

= w;(t) — Ric(w;i(t)), wi(0) = &;. (8.21)
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Note that (8.2) has a unique solution w;(t) on M x [0,00). By using (8.1) and
the estimate on the lower bound of scalar curvature R(w;(t)) along the flow, we
have

1
/ |R(wi(t)) — n|wi(t)" Adt < 2n(e—1)(1 —Bi)/ w; ()™ — 0. (8.22)
o Jm M
Let S (0 < k < 2n—1) denote the subset of M, consisting of points for which
no tangent cone splits off a factor, R¥*!, isometrically. Clearly,

SoCSC--C8Sop1.

It is proved by Cheeger-Colding that Sa,_1 = @ and dimS, < k. For any
€ Mo \S = Sz, 2, every tangent cone is R?", so there is a 7 > 0 satisfying:

VOI(BT(QS, doo)) > (1 - 5) Cn,

where § > 0 is chosen smaller than the ones in Proposition 8.2 and 8.4. Then by
using Proposition 8.4 and (8.22),, we know that B, 4(7, dw) is also the Gromov-
Hausdorff limit of B, 4(z;,w;(t)) for some 2; € M and any t € (0,4]. Since the
curvature of w;(t) is uniformly bounded by t~1, w;(t) converge to a smooth
metric wo, which induces do for any € (0,d] . Also by (8.22), we has to be
Kéhler-Einstein. This shows that M, \S is a smooth manifold on which du,
coincides with a Kéhler-Einstein metric wo,. We will identify do, with wee.

Similarly, we can show that each tangent cone C, is regular outside S,: Let
x € My and r; — 0 such that (Moo,rj_Qwoo,x) converge to (Cy,ws,0). Choose
x; € M such that limz; = z. For each j, we choose i(j) sufficiently large
such that (M, r;zd;i(j),xi(j)) converge to (C;,w,,0). Furthermore, if i = i(j) is
sufficiently large, we have

) o 9. _9. n
/M [Ric(r; “@igjy) — 5 @) (Tj @i(j))

< /M IRic(@;(j)) — @iyl @5t;) — 0. (8.23)

Clearly, for each j, r;zwi(r?t) is a solution of (8.17) with Ag = r]72. Thus, as
above, we can use Proposition 8.2 and 8.4 to prove that C, is smooth outside
S, and w, is Kéhler and Ricci-flat.

Finally, using the smallness of the integral in (8.23) and the slicing argument

in [CCTO02], one can prove that Sa,, 2 is empty, so M, is smooth outside a closed
subset of complex codimension at least 2. The theorem is proved.
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