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1 Introduction

In this paper, we solve a folklore conjecture 1 on Fano manifolds without non-
trivial holomorphic vector fields. The main technical ingredient is a conic version
of Cheeger-Colding-Tian’s theory on compactness of Kähler-Einstein manifolds.
This enables us to prove the partial C0-estimate for conic Kähler-Einstein met-
rics.

A Fano manifold is a projective manifold with positive first Chern class
c1(M). Its holomorphic fields form a Lie algebra η(M). The folklore conjecture
states: If η(M) = {0}, then M admits a Kähler-Einstein metric if and only
if M is K-stable with respect to the anti-canonical bundle K−1

M . Its necessary
part was established in [Ti97]. The following gives the sufficient part of this
conjecture.

∗Supported partially by a NSF grant
1It is often referred as the Yau-Tian-Donaldson conjecture
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Theorem 1.1. Let M be a Fano manifold canonically polarized by the anti-
canonical bundle K−1

M . If M is K-stable, then it admits a Kähler-Einstein met-
ric.

An older approach for proving this theorem is to solve the following complex
Monge-Ampere equations by the continuity method:

(ω +
√
−1 ∂∂̄ϕ)n = eh−tϕωn, ω +

√
−1 ∂∂̄ϕ > 0, (1.1)

where ω is a given Kähler metric with its Kähler class [ω] = 2πc1(M) and h is
uniquely determined by

Ric(ω)− ω =
√
−1 ∂∂̄h,

∫
M

(eh − 1)ωn = 0.

Let I be the set of t for which (1.1) is solvable. Then we have known: (1) By
the well-known Calabi-Yau theorem, I is non-empty; (2) In 1983, Aubin proved
that I is open [Au83]; (3) If we can have an a priori C0-estimate for the solutions
of (1.1), then I is closed and consequently, there is a Kähler-Einstein metric on
M .

However, the C0-estimate does not hold in general since there are many
Fano manifolds which do not admit any Kähler-Einstein metrics. The existence
of Kähler-Einstein metrics required certain geometric stability on the underly-
ing Fano manifolds. In early 90’s, I proposed a program towards establishing
the existence of Kähler-Einstein metrics. The key technical ingredient of this
program is a conjectured partial C0-estimate. If we can affirm this conjecture
for the solutions of (1.1), then we can use the K-stability to derive the a prior
C0-estimate and the Kähler-Einstein metric. The K-stability was first intro-
duced in [Ti97] as a test for the properness of the K-energy restricted to a finite
dimensional family of Kähler metrics induced by a fixed embedding by pluri-
anti-canonical sections.2 However, such a conjecture on partial C0-estimates is
still open except for Kähler-Einstein metrics.

In [Do10], in his approach to solving the above folklore conjecture through
the b-stability, Donaldson suggested a continuity method by deforming through
conic Kähler-Einstein metrics. Those are metrics with cone angle along a divisor.
For simplicity, here we consider only the case of smooth divisors.

Let M be a compact Kähler manifold and D ⊂ M be a smooth divisor. A
conic Kähler metric on M with angle 2πβ (0 < β ≤ 1) along D is a Kähler
metric on M\D that is asymptotically equivalent along D to the model conic
metric

ω0,β =
√
−1

dz1 ∧ dz̄1

|z1|2−2β
+

n∑
j=2

dzj ∧ dz̄j

 ,

where z1, z2, · · · , zn are holomorphic coordinates such thatD = {z1 = 0} locally.
Each conic Kähler metric can be given by its Kähler form ω which represents

2The K-stability was reformulated in more algebraic ways (see [Do02], [Pa12] and [Ti13]).
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a cohomology class [ω] in H1,1(M,C) ∩H2(M,R), referred as the Kähler class.
A conic Kähler-Einstein metric is a conic Kähler metric which is also Einstein
outside conic points.

In this paper, we only need to consider the following conic Kähler-Einstein
metrics: Let M be a Fano manifold and D be a smooth divisor which represents
the Poincaré dual of λc1(M). We call ω a conic Kähler-Einstein with cone angle
2πβ along D if it has 2πc1(M) as its Kähler class and satisfies

Ric(ω) = µω + 2π(1− β) [D]. (1.2)

Here the equation on M is in the sense of currents, while it is classical outside
D. We will require µ > 0 which is equivalent to (1 − β)λ < 1. As in the
smooth case, each conic Kähler metric ω with [ω] = 2πc1(M) is the curvature
of a Hermitian metric || · || on the anti-canonical bundle K−1

M . The difference is
that the Hermitian metric here is not smooth, but it is Hölder continuous.

Donaldson’s continuity method was originally proposed as follows: Assume
that λ = 1, i.e., D be a smooth anti-canonical divisor. It follows from [TY90]
that there is a complete Calabi-Yau metric on M\D. It was conjectured that
this complete metric is the limit of Kähler-Einstein metrics with cone angle
2πβ 7→ 0. If this is true, then the set E of β ∈ (0, 1] such that there is a conic
Kähler metric satisfying (1.2) is non-empty. It is proved in [Do10] that E is
open. Then we are led to proving that E is closed.

A problem with Donaldson’s original approach arose because we do not
know if a Fano manifold M always has a smooth anti-canonical divisor D.
Possibly, there are Fano manifolds which do not admit smooth anti-canonical
divisors. At least, it seems to be a highly non-trivial problem whether or not
any Fano manifold admits a smooth anti-canonical divisor. Fortunately, Li and
Sun bypassed this problem. Inspired by [JMR11], they modified Donaldson’s
original approach by allowing λ > 1. They observed that the main existence
theorem in [JMR11], coupled with an estimate on log-α invariants in [Be13],
implies the existence of conic Kähler-Einstein metrics with cone angle 2πβ so
long as µ = 1 − (1 − β)λ is sufficiently small. Now we define E to be set of
β ∈ (1− λ−1, 1] such that there is a conic Kähler metric satisfying (1.2). Then
E is non-empty. It follows from [Do10] that E is open. The difficult part is to
prove that E is closed.

The construction of Kähler-Einstein metrics with cone angle 2πβ can be
reduced to solving complex Monge-Ampere equations:

(ωβ +
√
−1∂∂̄ϕ)n = ehβ−µϕ ωnβ , (1.3)

where ωβ is a suitable family of conic Kähler metrics with [ωβ ] = 2πc1(M) and
cone angle 2πβ along D and hβ is determined by

Ric(ωβ) = µωβ + 2π(1− β) [D] +
√
−1 ∂∂̄hβ and

∫
M

(ehβ − 1)ωnβ = 0.

As shown in [JMR11], it is crucial for solving (1.3) to establish an a priori
C0-estimate for its solutions. Such a C0-estimate does not hold in general.
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Therefore, following my program on the existence of Kähler-Einstein metrics
through the Aubin’s continuity method, we can first establish a partial C0-
estimate and then use the K-stability to conclude the C0-estimate, consequently,
the existence of Kähler-Einstein metrics on Fano manifolds which are K-stable.

For any integer λ > 0 and β > 0, let E(λ, β) be the set of all triples (M,D,ω),
where M is a Fano manifold, D is a smooth divisor whose Poincare dual is
λ c1(M) and ω is a conic Kähler-Einstein metric on M with cone angle 2πβ
along D. For any ω ∈ E(λ, β), choose a Hölder continuous Hermitian metric h
with ω as its curvature form, then we have an induced inner product < ·, · > on
each H0(M,K−`M ) as follows:

< S, S′ >=

∫
M

h`(S, S′)ωn, ∀S, S′ ∈ H0(M,K−`M ). (1.4)

Let {Si}0≤i≤N be any orthonormal basis of H0(M,K−`M ) with respect to this
induced inner product by h and ω, then, as done in the smooth case, we can
introduce a function

ρω,`(x) =

N∑
i=0

||Si||2h(x). (1.5)

The following provides the partial C0-estimate for conic Kähler-Einstein
metrics. The estimate is needed in completing the proof of Theorem 1.1.

Theorem 1.2. For any fixed λ and β0 > 1− λ−1, there are uniform constants
ck = c(k, n, λ, β0) > 0 for k ≥ 1 and `i → ∞ such that for any β ≥ β0 and
ω ∈ E(λ, β), we have for ` = `i,

ρω,` ≥ c` > 0. (1.6)

We expect that this theorem holds for more general conic Kähler metrics.
In fact, our method for proving the above theorem should be also applicable to
establishing the partial C0-estimate for conic Kähler-Einstein metrics in more
general cases.

A crucial tool in proving Theorem 1.2 is an extension of Cheeger-Colding-
Tian’s compactness theorem for Kähler-Einstein metrics to the conic cases.

Theorem 1.3. Let M be a Fano manifold with a smooth pluri-anti-canonical
divisor D of K−λM . Assume that ωi be a sequence of conic Kähler-Einstein
metrics with cone angle 2πβi along D satisfying:

Ric(ωi) = µi ωi + 2π(1− βi) [D], µi = 1− (1− βi)λ.

where µi = 1 − (1 − βi)λ > 0. We further assume that limµi = µ∞ > 0 and
(M,ωi) converge to a length space (M∞, d∞) in the Gromov-Hausdorff topology.
Then there is a closed subset S̄ ∪D∞ of M∞, where S̄ is of codimension at least
4 and D∞ is the limit of D in the Gromov-Hausdorff topology, such that M∞
is a smooth Kähler manifold and d∞ is induced by a smooth Kähler-Einstein
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metric outside S̄ ∪ D∞ ⊂ M∞. Furthermore, (M,ωi) converge to (M∞, ω∞)
outside S̄ ∪D∞ in the C∞-topology.3

Extra technical inputs are needed in order to establish such an extension.

The organization of this paper is as follows: In the next section, we prove an
approximation theorem which states any conic Kähler-Einstein metric can be
approximated by smooth Kähler metrics with the same lower bound on Ricci
curvature. In section 3, we give an extension of my works with Cheeger-Colding
in [CCT02] to conic Kähler-Einstein manifolds. In section 4, we prove the
smooth convergence for conic Kähler-Einstein metrics. In the smooth case, it
is based on a result of M. Anderson. However, the arguments do not apply to
the conic case. We have to introduce a new method. In Section 5, we prove
Theorem 1.2, i.e., the partial C0-estimate for conic Kähler-Einstein metrics. In
Section 6, we prove Theorem 1.1. We provide two proofs. One is conceptually
better and works for more general cases, while the other is simpler and works for
the case of Kähler-Einstein metrics on Fano manifolds. In Appendix 1, we give a
detailed proof for a technical lemma in Section 5, i.e., Lemma 5.8. In Appendix
2, for the readers’ convenience, we outline a proof of a previous theorem due to
B. Wang and myself. This theorem will be used in Section 3 and 4 when we
prove an extension of [CCT02] when the cone angles tend to 1.

The existence of Kähler-Einstein metrics on K-stable Fano manifold was first
mentioned in my talk during the conference ”Conformal and Kähler Geometry”
held at IHP in Paris from September 17 to September 21 of 2012. On Octo-
ber 25 of 2012, in my talk at the Blainefest held at Stony Brook University,
I outlined my proof of Theorem 1.1, particularly, I described how to extend
[CCT02] to conic Kähler-Einstein manifolds4, including a sharp approximation
theorem for conic Kähler-Einstein metrics by smooth metrics with Ricci curva-
ture bounded from below and key ingredient in proving the smooth convergence
when cone angles tend to 1. I mentioned that the partial C0-estimate in the
conic case can be proved by using the extension of Cheeger-Colding-Tian com-
pactness and the arguments from [DS14] and also [Ti13]. I also mentioned that
the K-stability is equivalent to the properness of the K-energy restricted to
the family of Bergmann type metrics and the partial C0-estimate reduces the
required C0-estimate to this properness. On October 30 of 2012, X.X. Chen,
S. Donaldson and S. Sun posted on the arXiv a short note [CDS14] in which
they also announced a proof of Theorem 1.1 and gave an outline of the proof.
On November 20 of 2012, I posted on the arXiv the first version of this paper
which contains all necessary results for proving Theorem 1.1, and on January
28 of 2013, the second version of my paper which contains a proof of Theorem
1.1. After their announcement, Chen-Donaldson-Sun posted on the arXiv three
papers [CDS15, I, II, III] on November 19 of 2012, December 19 of 2012 and
February 1 of 2013 in which they also presented a proof of Theorem 1.1.

3Actually, we will prove (see Theorem 5.9) that M∞ is a normal variety embedded in some
CPN and S̄ is a subvariety of complex codimension at least 2.

4My work with Cheeger and Colding [CCT02] is definitely needed in establishing the partial
C0-estimate which is crucial for proving Theorem 1.1.
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In this new version, after feedbacks from referees and others, I improved the
presentation of this paper and provided additional details.

Acknowledgement: First I would like to thank my former advisor S. T.
Yau who brought me the problem of the existence of Kähler-Einstein metrics
on Fano manifolds when I was the first-year graduate student in 80s. I would
like to thank my friends and collaborators J. Cheeger and T. Colding, their
foundational regularity theory on Einstein metrics and my joint work with them
on Kähler-Einstein metrics have played a crucial role in proving Theorem 1.1. I
would also like to thank B. Wang, my former postdoctor and collaborator. My
joint work with him on almost Einstein metrics is very important in establishing
the main technical result in this paper. I would also like to thank Chi Li, J. Song
and Z.L. Zhang for many useful discussions in last few years. I am also grateful
to Weiyue Ding with whom I had a joint paper [DT92] on generalized Futaki
invariants. This paper played a very important role in my introducing the K-
stability in [Ti97]. I would also like to thank the referees for useful comments
on improving the presentation of this paper.

2 Smoothing conic Kähler-Einstein metrics

In this section, we address the question: Can one approximate a conic Kähler-
Einstein metrics by smooth Kähler metrics with Ricci curvature bounded from
below? For the sake of this paper, we confine ourselves to the case of positive
scalar curvature. Our approach can be adapted to other cases where the scalar
curvature is non-positive. In fact, the proof is even simpler.

Let ω be a conic Kähler-Einstein metric on M with cone angle 2πβ along
D, where D is a smooth divisor whose Poincaré dual is equal to λ c1(M), in
particular, ω satisfies (1.2) for µ = 1 − (1 − β)λ > 0. For any smooth Kähler
metric ω0 with [ω0] = 2πc1(M), we can write ω = ω0 +

√
−1 ∂∂̄ϕ for some

smooth function ϕ on M\D. Note that ϕ is Hölder continuous on M . Define
h0 by

Ric(ω0) − ω0 =
√
−1 ∂∂̄ h0,

∫
M

(eh0 − 1)ωn0 = 0.

Note that the first equation above is equivalent to

Ric(ω0) = µω0 + 2π(1− β)[D] +
√
−1 ∂∂̄(h0 − (1− β) log ||S||20),

where S is a holomorphic section of K−λM defining D and || · ||0 is a Hermitian

norm on K−λM with λω0 as its curvature. For convenience, we assume that

sup
M
||S||0 = 1.

If ωβ and hβ are those in (1.3), then modulo a constant,

hβ = h0 − (1− β) log ||S||20 − log

(
ωnβ
ωn0

)
− µψβ ,
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where ωβ = ω0 +
√
−1 ∂∂̄ψβ .

It follows from (1.2)

(ω0 +
√
−1 ∂∂̄ ϕ)n = eh0−(1−β) log ||S||20+aβ−µϕ ωn0 , (2.1)

where aβ is chosen according to∫
M

(
eh0−(1−β) log ||S||20+aβ − 1

)
ωn0 = 0.

Clearly, aβ is uniformly bounded so long as β ≥ β0 > 0.
The Lagrangian Fω0,µ(ϕ) of (2.1) is given by

Jω0
(ϕ) − 1

V

∫
M

ϕωn0 −
1

µ
log

(
1

V

∫
M

eh0−(1−β) log ||S||20+aβ−µϕ ωn0

)
, (2.2)

where V =
∫
M
ωn0 and

Jω0(ϕ) =
1

V

n−1∑
i=0

i+ 1

n+ 1

∫
M

√
−1 ∂ϕ ∧ ∂ϕ ∧ ωi0 ∧ ωn−i−1

ϕ , (2.3)

where ωϕ = ω0 +
√
−1 ∂∂̄ ϕ. Note that Fω0,µ is well-defined for any continuous

function ϕ.
Let us recall the following result

Theorem 2.1. If ω = ωϕ is a conic Kähler-Einstein with cone angle 2πβ along
D, then ϕ attains the minimum of the functional Fω0,µ on the space Kβ(M,ω0)
which consists of all smooth functions ψ on M\D such that ωψ is a conic Kähler
metric with angle 2πβ along D. In particular, Fω0,µ is bounded from below.

One can find its proof in [Bo11] (also see [LS14]). An alternative proof may
be given by extending the arguments in [DT91] to conic Kähler metrics.

Corollary 2.2. If µ < 1, then there are ε > 0 and Cε > 0, which may depend
on ω and µ, such that for any ψ ∈ Kβ(M,ω0), we have for any t ∈ (0, µ]5

Fω0,t(ψ) ≥ εJω0(ψ) − Cε. (2.4)

Proof. It follows from the arguments of using the log-α-invariant in [LS14] that
Fω0,t satisfies (2.4) for t > 0 sufficiently small. Let ω = ωϕ be the conic Kähler-
Einstein metric with angle 2πβ along D. Then ϕ satisfies (2.1). Since M does
not admit non-zero holomorphic fields6, it follows from [Do10] that (2.1) has a
solution ϕ̄ when µ is replaced by µ̄ = µ + δ for δ > sufficiently small. Hence,
by Theorem 2.1, Fω0,µ̄ is bounded from below. Then this corollary follows from
Proposition 1.7 in [LS14] 7

5The corresponding βt is defined by (1− t) = (1− βt)λ.
6Even if M does have non-trivial holomorphic fields, one can choose D such that there are

no holomorphic fields which are tangent to D. This is sufficient for rest of the proof.
7In [LS14], the reference metric ω0 may be slightly different from ours, however, the argu-

ments apply.
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Now we consider the following equation:

(ω0 +
√
−1 ∂∂̄ ϕ)n = ehδ−µϕ ωn0 , (2.5)

where
hδ = h0 − (1− β) log(δ + ||S||20) + cδ

for some constant cδ determined by∫
M

(
eh0−(1−β) log(δ+||S||20)+cδ − 1

)
ωn0 = 0.

Clearly, cδ is uniformly bounded. If ϕδ is a solution, then we get a smooth
Kähler metric

ωδ = ω0 +
√
−1 ∂∂̄ ϕδ.

Its Ricci curvature is given by

Ric(ωδ) = µωδ +
δ(1− β)λ

δ + ||S||20
ω0 + δ(1− β)

∇S ∧∇S
(δ + ||S||20)2

,

where ∇S denotes the covariant derivative of S with respect to the Hermitian
metric || · ||0. In particular, the Ricci curvature of ωδ is greater than µ whenever
β < 1 and δ > 0.8

We will solve (2.5) for such ωδ’s and show that they converge to the conic
Kähler-Einstein metric ω in a suitable sense.

To solve (2.5), we use the standard continuity method:

(ω0 +
√
−1 ∂∂̄ ϕ)n = ehδ−tϕ ωn0 . (2.6)

Define Iδ to be the set of t ∈ [0, µ] for which (2.6) is solvable. By the Calabi-Yau
theorem, 0 ∈ Iδ.

We may assume µ < 1, otherwise, we have nothing more to do.

Lemma 2.3. The interval Iδ is open.

Proof. If t ∈ Iδ and ϕ is a corresponding solution of (2.6), then the Ricci
curvature of the associated metric ωϕ is equal to

t ωϕ +

(
(µ− t) +

δ(1− β)λ

δ + ||S||20

)
ω0 + δ(1− β)

∇S ∧∇S
(δ + ||S||20)2

.

So Ric(ωϕ) > tωϕ. By the well-known Bochner identity, the first non-zero
eigenvalue of ωϕ is strictly bigger than t. It implies that the linearization ∆t+ t
of (2.6) at ϕ is invertible, where ∆t is the Laplacian of ωϕ. By the Implicit
Function Theorem, (2.6) is solvable for any t′ close to t, so Iδ is open.

8This observation is crucial in our approximating the conic Kähler-Einstein metric ω. This
and (2.5) first appeared in my lecture at SBU on October 25, 2012. Once we have this
observation on Ricci curvature, the arguments in establishing the existence of ωδ as in Theorem
2.5 and 2.6 below are identical to what I used in [Ti97].
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Therefore, we only need to prove that Iδ is closed. This is amount to a priori
estimates for any derivatives of the solutions of (2.6). As usual, by using known
techniques in deriving higher order estimates, we need to bound only Jω0

(ϕ)
for any solution ϕ of (2.6) (cf. [Ti97], [Ti00]). The following arguments are
identical to those for proving that the properness of Fω0,1 implies the existence
of the Kähler-Einstein metrics in Theorem 1.6 of [Ti97].

We introduce

Fδ,t(ϕ) = Jω0
(ϕ) − 1

V

∫
M

ϕωn0 −
1

t
log

(
1

V

∫
M

ehδ−tϕ ωn0

)
. (2.7)

This is the Lagrangian of (2.6).

Lemma 2.4. There is a constant C independent of t satisfying: For any smooth
family of ϕs (s ∈ [0, t]) such that ϕ = ϕt and ϕs solves (2.6) with parameter s,
we have

Fδ,t(ϕ) ≤ C.

Proof. First we observe

Fδ,s(ϕs) = Jω0(ϕs) −
1

V

∫
M

ϕs ω
n
0 . (2.8)

So its derivative on s is given by

d

ds
Fδ,s(ϕs) =

1

sV

∫
M

ϕs (ω0 +
√
−1 ∂∂̄ ϕs)

n.

Here we have used the fact∫
M

(s ϕ̇s + ϕs) (ω0 +
√
−1 ∂∂̄ ϕs)

n = 0

This follows from differentiating (2.6) on s.
We will show that the derivative in (2.8) is bounded from above. Without

loss of the generality, we may assume that s ≥ s0 > 0. Then we have

Ric(ωϕs) ≥ s ωϕs ≥ s0 ωϕs ,

and consequently, the Sobolev constant of ωϕs is uniformly bounded. By the
standard Moser iteration, we have (cf. [Ti00])

− inf
M

ϕs ≤ −
1

V

∫
M

ϕs (ω0 +
√
−1∂∂̄ ϕs)

n + C ′.

Since infM ϕs ≤ 0, we get

d

ds
Fδ,s(ϕs) ≤ s−1

0 C ′.

The lemma follows from integration along s.
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Next we observe for any t ≤ µ

hδ = h0 − (1− β) log(δ + ||S||20) + cδ ≤ h0 − (1− βt) log ||S||20 + cδ.

Hence, by Corollary 2.2, we have

Fδ,t(ψ) ≥ εJω0(ψ) − Cε −
cδ − aβ

t
.

Since both cδ and aβ are uniformly bounded, combined with Lemma 2.4, we
conclude that Jω0

(ϕ) is uniformly bounded for any solution ϕ of (2.6).9 Thus
we have proved

Theorem 2.5. For any δ > 0, (2.5) has a unique smooth solution ϕδ. Con-
sequently, we have a Kähler metric ωδ = ω0 +

√
−1 ∂∂̄ϕδ with Ricci curvature

greater than or equal to µ.

Next we examine the limit of ωδ or ϕδ as δ tends to 0. First we note
that for the conic Kähler-Einstein metric ω with cone angle 2πβ along D given
above, there is a uniform constant c = c(ω) such that supM |ϕδ| ≤ c. Using
Ric(ωδ) ≥ µωδ and the standard computations, we have

∆ log trωδ(ω0) ≥ −a trωδ(ω0),

where ∆ is the Laplacian of ωδ and a is a positive upper bound of the bisectional
curvature of ω0. If we put

u = log trωδ(ω0) − (a+ 1)ϕδ,

then it follows from the above

∆u ≥ eu−(a+1) c − n(a+ 1).

Hence, we have
u ≤ (n+ c) (a+ 1),

this implies
C−1 ω0 ≤ ωδ,

where C = (n+ 2 c)(a+ 1). Using the equation (2.6), we have

C−1 ω0 ≤ ωδ ≤ C ′ (δ + ||S||2)−(1−β) ω0, (2.9)

where C ′ is a constant depending only on a and ω0. Since β > 0, the above
estimate on ωδ = ω0 +

√
−1 ∂∂̄ ϕδ gives the uniform Hölder continuity of ϕδ.

Furthermore, using the Calabi estimate for the 3rd derivatives and the standard
regularity theory, we can prove (cf. [Ti00]): For any l > 2 and a compact subset
K ⊂M\D, there is a uniform constant Cl,K such that

||ϕδ||Cl(K) ≤ Cl,K . (2.10)

Then we can deduce from the above estimates:
9Here we also used the fact that Jω0 (ϕ) is automatically bounded for t > 0 sufficiently

small.
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Theorem 2.6. The smooth Kähler metrics ωδ converge to ω in the Gromov-
Hausdorff topology on M and in the smooth topology outside D.

Proof. It suffices to prove the first statement: ωδ converge to ω in the Gromov-
Hausdorff topology. Since ωδ has Ricci curvature bounded from below by a
fixed µ > 0, by the Gromov Compactness Theorem, any sequence of (M,ωδ)
has a subsequence converging to a length space (M̄, d̄) in the Gromov-Hausdorff
topology. We only need to prove that any such a limit (M̄, d̄) coincides with
(M,ω). Without loss of generality, we may assume that (M,ωδ) converge to
(M̄, d̄) in the Gromov-Hausdorff topology. By the estimates on derivatives in
(2.10), M̄ contains an open subset U which can be identified with M\D, more-
over, this identification ι : M\D 7→ U is an isometry between (M\D,ω|M\D)
and (U, d̄|U ). On the other hand, since ω is a conic metric with angle 2πβ ≤ 2π
along D, one can easily show by standard arguments that M M is the metric
completion of M\D with respect to ω. Then it follows from (2.9) that ι extends
to a Lipschtz map from (M,ω) onto (M̄, d̄), still denoted by ι. In fact, the
Lipschtz constant is 1.

We claim that ι is an isometry. This is equivalent to the following: For any
p and q in M\D,

dω(p, q) = d̄(ι(p), ι(q)).

It also follows from (2.9) that D̄ = ι(D) has Hausdorff measure 0 and is the
Gromov-Hausdorff limit of D under the convergence of (M,ωδ) to (M̄, d̄). To
prove the above claim, we only need to prove: For any p̄, q̄ ∈ M̄\D̄, there is a
minimizing geodesic γ ⊂ M̄\D̄ joining p̄ to q̄. Its proof is based on a relative
volume comparison estimate due to Gromov ([Gr97], p 523, (B)). 10 We will
prove it by contradiction. If no such a geodesic joins p̄ to q̄, then, observing
that M\D is geodesically convex with respect to ω, we have

d̄(p̄, q̄) < dω(p, q),

where p̄ = ι(p) and q̄ = ι(q). Then there is a r > 0 satisfying:

(1) Br(p̄, d̄) ∩ D̄ = ∅ and Br(q̄, d̄) ∩ D̄ = ∅, where Br(·, d̄) denotes a geodesic
ball in (M̄, d̄);

(2) d̄(x̄, ȳ) < dω(x, y), where x̄ = ι(x) ∈ Br(p̄, d̄) and ȳ = ι(y) ∈ Br(q̄, d̄).

It follows from (1) and (2) that any minimizing geodesic γ from x̄ to ȳ
intersects with D̄. By choosing r sufficiently small, we may have

Br(p̄, d̄) = ι(Br(p, ω)) and Br(q̄, d̄) = ι(Br(q, ω)).

Choose a small tubular neighborhood T of D in M whose closure is disjoint from
both Br(p, ω) and Br(q, ω). It is easy to see that T can be chosen to have the

10I am indebted to Jian Song for this reference. He seems to be the first of applying such
an estimate to studying the convergence problem in Kähler geometry.
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volume of ∂T as small as we want. Now we choose pδ, qδ ∈M and neighborhood
Tδ of D with respect to ωδ such that in the Gromov-Haudorff convergence,

lim
δ→0+

pδ = p̄ , lim
δ→0+

qδ = q̄ , lim
δ→0+

Tδ = ι(T ) .

It follows
lim
δ→0+

V ol(∂Tδ, ωδ) = V ol(∂T, ω).

Also, for δ sufficiently small, Br(pδ, ωδ), Br(qδ, ωδ) and Tδ are mutually disjoint.
Clearly, any minimizing geodesic γδ from any w ∈ Br(pδ, ωδ) to z ∈ Br(qδ, ωδ)
intersects with Tδ, so by Gromov’s estimate ([Gr97], p523, (B)),

c r2n ≤ V ol(Br(qδ, ωδ), ωδ) ≤ C V ol(∂Tδ, ωδ),

where c depends only on β and C depends only on β, n, r. This leads to a
contradiction because V ol(∂Tδ, ωδ) converge to V ol(∂T, ω) which can be made
as small as we want. Thus, ι is an isometry and our theorem is proved.

3 An extension of Cheeger-Colding-Tian

In this section, we show a compactness theorem on conic Kähler-Einstein met-
rics. This theorem, coupled with the smooth convergence result in the next
section, extends a result of Cheeger-Colding-Tian [CCT02] on smooth Kähler-
Einstein metrics. In fact, our proof makes use of results in [CCT02] with injec-
tion of some new technical ingredients.

Let ωi be a sequence of conic Kähler-Einstein metrics with cone angle 2πβi
along D, so we have

Ric(ωi) = µiωi + 2π(1− βi) [D], µi = 1− (1− βi)λ.

We assume that limβi = β∞ > 1− λ−1, it follows limµi = µ∞ > 0.
For each ωi, we use Theorem 2.6 to get a smooth Kähler metric ω̃i satisfying:

A1. Its Kähler class [ω̃i] = 2πc1(M);

A2. Its Ricci curvature Ric(ω̃i) ≥ µi ω̃i;

A3. The Gromov-Hausdorff distance dGH(ωi, ω̃i) is less that 1/i.

By the Gromov compactness theorem, a subsequence of (M, ω̃i) converges
to a metric space (M∞, d∞) in the Gromov-Hausdorff topology. For simplicity,
we may assume that (M, ω̃i) converges to (M∞, d∞). It follows from A3 above
that (M,ωi) also converges to (M∞, d∞) in the Gromov-Hausdorff topology.

Theorem 3.1. There is a closed subset S ⊂ M∞ of Hausdorff codimension at
least 2 such that M∞\S is a smooth Kähler manifold and d∞ is induced by a
Kähler-Einstein metric ω∞ outside S, that is,

Ric(ω∞) = µ∞ ω∞ on M∞\S.

12



If β∞ < 1, then ωi converges to ω∞ in the C∞-topology outside S. Moreover,
if β∞ = 1, the set S is of codimension at least 4 and ω∞ extends to a smooth
Kähler metric on M∞\S.

This theorem is essentially due to Z.L. Zhang and myself [TZ12]. In this joint
work, we develop a regularity theory for conic Einstein metrics which generalizes
the work of Cheeger-Colding and Cheeger-Colding-Tian. Here, for completion
and convenience, we give an alternative proof by using the approximations from
last section.

Proof. Using the fact that (M∞, d∞) is the Gromov-Hausdorff limit of (M, ω̃i),
we can deduce from [CC95] the existence of tangent cones at every x ∈ M∞.
More precisely, given any x ∈ M∞, for any ri 7→ 0, by taking a subsequence if
necessary, (M∞, r

−2
i d∞, x) converges to a tangent cone Cx at x. Define R to be

the set of all points x in M∞ such that some tangent cone Cx is isometric to
R2n.

First we prove that R is open. If β∞ = 1, then limµi = 1. Since

[ω̃i] = 2π c1(M) and Ric(ω̃i) ≥ µi ω̃i,

we have (cf. Appendix 2)∫
M

|Ric(ω̃i) − ω̃i| ω̃ni ≤ 2 (1− µi)
∫
M

ω̃ni → 0. (3.1)

This means that (M, ω̃i) form a sequence of almost Kähler-Einstein metrics in
the sense of [TW12].11 Then it follows from Theorem 2 in [TW12] (also Theorem
8.1 in Appendix 2) that M∞ is smooth outside a closed subset S of codimension
at least 4 and d∞ is induced by a smooth Kähler-Einstein metric ω∞ on M∞\S.

Now assume that β∞ < 1. Note that (M,ωi) also converge to (M∞, d∞) in
the Gromov-Hausdorff topology. Let {xi} be a sequence of points in M which
converge to x ∈ R during (M,ωi)’s converging to (M∞, d∞). Since x ∈ R, there
is a tangent cone Cx of (M∞, d∞) at x which is isometric to R2n. It follows that
for any ε > 0, there is a r = r(ε) such that

V ol(Br(x, d∞))

r2n
≥ c(n)− ε,

where c(n) denotes the volume of the unit ball in R2n. On the other hand, if
yi ∈ D, then by the Bishop-Gromov volume comparison, for any r̃ > 0, we have

V ol(Br̃(yi, ωi))

r̃2n
≤ c(n)βi.

It also follows from the Bishop-Gromov volume comparison that there is an
N = N(ε) such that for any small r̄ ∈ (0, r/N) and yi ∈ Br̄(xi, ωi), we have

1− ε ≤ V ol(Br(yi, ωi))

V ol(Br(xi, ωi))
≤ 1 + ε.

11To see why we call (M, ω̃i) a sequence of almost Kähler-Einstein metrics, we first note that
if (M, ω̃i) has a smooth limit, then such a limit must be a Kähler-Einstein metric. However,
(3.1) indicates that (M, ω̃i) converges to a Kähler-Einstein metric in the L1-sense.
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Now we claim that if r̄ = r/N , we have Br̄(xi, ωi) ∩ D = ∅. If this claim
is false, say yi ∈ Br̄(xi, ωi) ∩ D, then for i sufficiently large, we can deduce
from the above and a result of Colding [Co94] on the volume convergence in the
Gromov-Hausdorff topology

c(n)− 2ε ≤ V ol(Br(xi, ωi))

r2n
≤ (1 + ε)

V ol(Br(yi, ωi))

r2n
≤ c(n)(1 + ε)βi.

Then we get a contradiction if ε is chosen sufficiently small. The claim is proved.
Since Br̄(xi, ωi) is contained in the smooth part of (M,ωi) and its volume

is sufficiently close to that of an Euclidean ball, the curvature of ωi is uni-
formly bounded on the smaller ball B3r̄/4(xi, ωi) (cf. [An90]). It follows that
ωi restricted to Br̄/2(xi, ωi) converge to a smooth Kähler-Einstein metric on
Br̄/2(x, d∞) and Br̄/2(x, d∞) ⊂ R. So R is open and d∞ restricted to R is
induced by a smooth Kähler-Einstein metric ω∞.

The rest of the proof is standard in view of [CCT02].
Let Sk (k = 0, 1, · · · , 2n − 1) denote the subset of M∞ consisting of points

for which no tangent cone splits off a factor, Rk+1, isometrically. Clearly, S0 ⊂
S1 ⊂ · · · ⊂ S2n−1. It is proved by Cheeger-Colding [CC95] that S2n−1 = ∅,
dimSk ≤ k and S = S2n−2. Moreover, if β∞ = 1, it follows from [TW12] or
Appendix 2 that S = S2n−4. Then we have proved this theorem.

Using the same arguments in [CCT02], one can show:

Theorem 3.2. Let Cx be a tangent cone of M∞ at x ∈ S, then we have

C1. Each Cx is regular outside a closed subcone Sx of complex codimension at
least 1. Such a Sx is the singular set of Cx;

C2. Cx = Ck × C′x, in particular, S2k+1 = S2k. We will denote by o the vortex
of Cx;

C3. There is a natural Kähler Ricci-flat metric gx whose Kähler form ωx is√
−1 ∂∂̄ρ2

x on Cx\Sx, where ρx denotes the distance function from o. Also gx is
a cone metric;

C4. For any x ∈ S2n−2 with Cx = Cn−1 × C′x, then C′x is a 2-dimensional flat
cone of angle 2πβ̄ such that 0 < β̄∞ ≤ β̄ ≤ β∞ and (1 − β̄) = m(1 − β∞) for
some integer m ≥ 1, where β̄∞ depends only on β∞ and c1(M)n.

Proof. C1, C2 and C3 follow directly from results in [CCT02]. 12 The proof
of C4 uses the slicing argument in [CCT02] (also see [Ch03]) for proving that
S2n−2 = ∅ in the case of smooth Kähler-Einstein metrics. For the readers’
convenience, we adapt the arguments for a proof in our case.

Since (M,ωi) converge to (M∞, ω∞), there are ri → 0 and xi ∈ M such
that (M, r−1

i ωi, xi) converge to the cone Cx. It follows from Theorem 2.37 in

12To prove that gx is Kähler-Ricci flat in C3, we use the fact that (M∞, d∞) is also the
limit of conic Kähler-Einstein manifolds (M,ωi).
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[CCT02] that there are εi → 0 and maps (Φi,ui) : B5/2(xi, r
−2
i ωi) 7→ Cn−1×R+

satisfying:

max{Lip(Φi), Lip(ui)} ≤ c(n),∫
|z|<1, z∈Cn−1

∣∣V (z) − 2πβ̄
∣∣ dz ∧ dz̄ ≤ εi,

where V (z) is the volume of Σz = Φ−1
i (z) ∩ u−1

i ([0, 1]) with respect to r−2
i ωi.

These correspond to (2.38) and (2.40) in [CCT02]. Actually, we first apply
Theorem 2.37 in [CCT02] to smooth approximations of (M,ωi) produced in
Theorem 2.6 and then take the limit. Moreover, in view of the proof of Theorem
2.37 in [CCT02], the components of Φi and ui are defined by solving Laplacian
equations, so they are smooth outside D. By slight modification if necessary,
we may also assume that Φi is smooth along D.

In the following, for simplicity, write ε = εi and (Φ,u) = (Φi,ui). As
a consequence of the above estimates on Φ and u, we can find a subset Bε of
{ |z| < 1 } ⊂ Cn−1 with large measure such that for any z ∈ Bε, Σz is transversal
to D with its boundary converging to {z}×S1

β̄
as i→∞, where S1

β̄
denotes the

unit circle in C′x, and
|V (z) − 2πβ̄| ≤ C ε,

where C is a uniform constant. Now K−1
M restricts to a line bundle on Σz with

am induced Hermitian metric hz by r−2
i ωi whose curvature Ω is equal to

Ric(r−2ωi) = µωi + 2π(1− βi) ι∗z[D],

where ιz : Σz 7→ M denotes the embedding. Let π : SΣz 7→ Σz be the unit
circle bundle of this Hermitian line bundle, then

π∗Ω = d θ on Σz\D,

where θ denotes the connection 1-form of hz which has residue equal to ± (1−βi)
at each intersection of Σz with D.13 Since z is a regular value, the normal bundle
of Σz is trivial, so the Euler number of K−1

M restricted to Σz is the same as that
of TΣz. It follows that there is a section v of K−1

M over Σz with non-degenerate
zeroes outside D ∩Σz and which is equal to outward unit normal of ∂Σz along
the boundary of Σz. Note that

χ(Σz) =
∑
v(p)=0

±1 ≤ 1.

Put
s =

v

||v||
: Σz\(D ∪ v−1(0)) 7→ SΣz.

Hence, by the Stokes Theorem, we have∫
Σz

Ω =

∫
∂Σz

s∗θ −
∑

p∈D or v(p)=0

lim
δ→0

∫
∂Bδ(p,r

−2
i ωi)

s∗θ

13The sign depends on whether or not Σz intersects with D positively.
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It follows
(χ(Σz)− β̄) − m (1− β∞) = o(1),

where m = m(z) is the algebraic intersection number of Σz with D and o(1)
denotes a quantity which converges to 0 as i goes to ∞. If m is non-negative,
then we see 1− β̄ = m(1− β∞) by taking i sufficiently large.

Now we claim that there are regular values z′s of Φ such that m(z) ≥ 0.
This follows from the co-area formula:14∫

B6(xi,r
−2
i ωi)∩D

|dΦ|ωn−1
i =

∫
z ∈Cn−1

m(z) dz ∧ dz̄.

The left side is non-negative, so we can find a subset of regular values in Cn−1

of positive measure such that m(z) ≥ 0. Our claim is proved.
The bounds on β̄ follow from the Bishop-Gromov volume comparison. Note

that β̄∞ depends only on the diameter and volume of M∞. Hence, there are
only finitely many of such β̄ if β∞ <∞.

Next we state another corollary of Theorem 2.6:

Lemma 3.3. There is a uniform bound on the Sobolev constants of (M,ωi),
that is, there is a constant C such that for any f ∈ C1(M,R),(∫

M

|f |
2n
n−1 ωni

)n−1
n

≤ C

∫
M

(|df |2ωi + |f |2)ωni . (3.2)

Proof. By Theorem 2.6, for any i, there is a sequence of smooth Kähler metrics
ωi,δ converging to ωi in the Gromov-Hausdorff topology and Ric(ωi,δ) ≥ µi ωi,δ.
Since the volume of ωi,δ is fixed, it is well-known that (3.2) holds uniformly for
ωi,δ. Then the lemma follows by taking δ → 0 and applying results in [Ch99]
and [HK95] to our special case. Actually, we can give a direct proof in our case.
Let us indicate how to do it. First, by (2.9), ωi and ωi,δ are all bounded from
below by a smooth metric on M , so |∇f |ωi and |∇f |ωi,δ are uniformly bounded
from above by a constant which may depend on f . Secondly, as δ goes to 0, ωi,δ
converge to ωi in the smooth topology outside D. Then (3.2) follows easily.

4 Smooth convergence

We will adopt the notations from last section, e.g., ωi is a conic Kähler-Einstein
metric on M with angle 2πβi along D as before. The main result of this section
is to show that ωi converge to ω∞ outside a close subset of codimension at
least 2. This is crucial for our establishing the partial C0-estimate for conic
Kähler-Einstein metrics as well as finishing the proof Theorem 1.1. This is
related to the limit of D when (M,ωi) converges to (M∞, d∞). If β∞ < 1,
the limit of D is in the singular set S of M∞ since ωi converge to ω∞ in the

14In Appendix 1, in our case of conic Kähler-Einstein metrics, we give an alternative way
of constructing a slice Σz whose m(z) is automatically positive.
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C∞-topology outside S as shown in Theorem 3.1. The difficulty lies in the case
when β∞ = 1. By [TW12] or Theorem 8.1 in Appendix 2, S is a closed subset
of codimension at least 4, equivalently, M∞ is actually smooth outside a closed
subset of codimension 4. Related results for smooth Kähler-Einstein metrics
were proved before (cf. [CCT02], [Ch03]). However, a priori, it is not even clear
if ωi converge to ω∞ in a stronger topology on any open subset of M∞\S. The
original arguments in [CCT02] rely on an argument in [An90] which works only
for smooth metrics. It fails for conic Kähler-Einstein metrics. So we need to
have a new approach. In the course of proving our main result in this section,
we also exam the limit of D in M∞.

First we describe a general and important construction: Given any conic
metric ω with cone angle 2πβ along D, its determinant gives a Hermitian metric
H̃ on K−1

M outside D. For simplicity, we will also denote by H̃ the induced

Hermitian metric on K−`M for any ` > 0. However, H̃ is singular along D, more

precisely, if S is a defining section of D, then it is of the order ||S||−2(1−β)
0 along

D, where || · ||0 is a fixed Hermitian norm. This implies that H̃(S, S)
1−β
µ H̃ is

bounded along D, where µ = 1− (1−β)λ. On the other hand, there is a unique
h such that as currents,

Ric(ω) = µω + 2π(1− β) [D] +
√
−1 ∂∂̄h,

where h is normalized by ∫
M

(
eh − 1

)
ωn = 0.

Note that h is Hölder continuous. Put

Hω(·, ·) = e
h
µ H̃(S, S)

1−β
µ H̃(·, ·),

then as a current, the curvature of Hω is equal to

Ric(ω) − 1− β
µ

√
−1 ∂∂̄ log H̃(S, S) −

√
−1

µ
∂∂̄h = ω.

Also we normalize Hω by scaling S such that∫
M

Hω(S, S)ωn =

∫
M

e
λh
µ H̃(S, S)

1
µ ωn = 1.

Such a Hermitian metric Hω is uniquely determined by ω and D and called the
associated Hermitian metric of ω. If ω is conic Kähler-Einstein, its associated
metric Hω is determined by the volume form ωn, e.g., in local holomorphic
coordinates z1, · · · , zn, write

ω =
√
−1

n∑
a,b=1

gab̄ dza ∧ dz̄b and S = f

(
∂

∂z1
∧ · · · ∧ ∂

∂zn

)λ
,
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then Hω is represented by

det(gab̄)
1
µ |f |

2(1−β)
µ .

In particular, it implies that for any σ ∈ H0(M,K−`M ), Hω(σ, σ) is bounded
along D.

Now we recall some identities for pluri-anti-canonical sections.

Lemma 4.1. Let ωi be as above and Hi be the associated Hermitian metric on
K−1
M . Then for any σ ∈ H0(M,K−`M ), we have (in the sense of distribution)

∆i||σ||2i = ||∇σ||2i − n` ||σ||2i (4.1)

and
∆i||∇σ||2i = ||∇2σ||2i − ((n+ 2) ` − µi) ||∇σ||2i , (4.2)

where || · ||i denotes the Hermitian norm on K−`M induced by Hi = Hωi , ∇
denotes the covariant derivative of Hi and ∆i denotes the Laplacian of ωi.

Proof. On M\D, both (4.1) and (4.2) were already derived in [Ti91] by direct
computations. Since ||σ||2i is bounded, (4.1) holds on M .

By a direct computation in local coordinates, one can also show that ||∇σ||2i
is bounded along D, so (4.2) also holds.

Applying the standard Moser iteration to (4.1) and (4.2) and using Lemma
3.3, we obtain

Corollary 4.2. There is a uniform constant C such that for any σ ∈ H0(M,K−`M ),
we have

sup
M

(
||σ||i + `−

1
2 ||∇σ||i

)
≤ C `

n
2

(∫
M

||σ||2i ωni
) 1

2

. (4.3)

If σi is a sequence in H0(M,K−`M ) satisfying:∫
M

||σi||2i ωni = 1,

then by Corollary 4.2, ||σi||i and their derivative are uniformly bounded. It
implies that ||σi||i are uniformly continuous. Hence, by taking a subsequence if
necessary, we may assume ||σi||i converge to a Lipschtz function F∞ as i tends
to ∞, moreover, we have ∫

M∞

F 2
∞ ωn∞ = 1.

In particular, F∞ is non-zero. Our strategy is to prove that ωi converge to ω∞
on F−1

∞ (0)∪S and F∞ is equal to the square norm of a holomorphic section on
M∞.

Now we assume σi = aiS, where ai are constants and S is a defining section
of D. Then ||σi||i(x) = 0 if and only if x ∈ D . If F∞(x) 6= 0 for some
x ∈M∞\S, then for a sufficiently small r > 0, we have

2F∞(y) ≥ F∞(x) > 0, ∀ y ∈ Br(x, ω∞).
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This is because F∞ is continuous. We can also have

Br(x, ω∞) ⊂M∞\S.

Since ||σi||i converge to F∞ uniformly, for i sufficiently large, ||σi||i > 0 on those
geodesic balls Br(xi, ωi) of (M,ωi) which converge to Br(x, ω∞) in the Gromov-
Hausdorff topology. It follows that Br(xi, ωi) ⊂ M\D, that is, each Br(xi, ωi)
lies in the smooth part of (M,ωi). On the other hand, since x is a smooth point
of M∞, by choosing smaller r, we can make the volume of Br(xi, ωi) sufficiently
close to that of corresponding Euclidean ball, then as one argued in [CCT02]
by using a result of [An90], ωi restricted to Br(xi, ωi) converge to ω∞ on any
compact subset of Br(x, ω∞) in the C∞-topology. Thus, ωi converge to ω∞ in
the C∞-topology on the non-empty open subset M∞\F−1

∞ (0) ∪ S.
Next we want to show that F−1

∞ (0) does not contain any open subset,15

or equivalently, M∞\F−1
∞ (0) is an open-dense subset in M∞. We prove it by

contradiction. If it is false, say U ⊂ F−1
∞ (0) is open, using the fact that ||σi||i

is uniformly bounded from above, we have

lim
i→∞

∫
M

log(
1

i
+ ||σi||2i )ωni = −∞. (4.4)

By a direct computation, we have

ωi +
√
−1∂∂̄ log(

1

i
+ ||σi||2i ) =

ωi
1 + i ||σi||2i

+
i∇σi ∧∇σi

(1 + i ||σi||2i )2
≥ 0.

It implies

∆i log(
1

i
+ ||σi||2i ) ≥ −n.

Using the Sobolev inequality in Lemma 3.3 and the Moser iteration, we can
deduce

sup
M

log(
1

i
+ ||σi||2i ) ≤ C

(
1 +

∫
M

log(
1

i
+ ||σi||2i )ωni

)
, (4.5)

where C is a uniform constant. By (4.4),

lim
i→∞

sup
M

log(
1

i
+ ||σi||2i ) = −∞.

However, since the L2-norm of ||σi||i is equal to 1, there is a constant c inde-
pendent of i such that

sup
M

log(
1

i
+ ||σi||2i ) ≥ −c. (4.6)

This leads to a contradiction. Therefore, M∞\F−1
∞ (0) is dense.

15The same arguments actually show that it does not contain any subset of positive measure.
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By our definition of the metric Hi associated to ωi, in local holomorphic
coordinates z1, · · · , zn away from D, we have

||σi||2i =
(

(det(gab̄))
λ |w|2

) 1
µ

where

σi = w

(
∂

∂z1
∧ · · · ∧ ∂

∂zn

)⊗λ
and ωi =

√
−1

n∑
a,b=1

gab̄ dza ∧ dz̄b .

Since ωi converge to ω∞ in the C∞-topology outside F−1
∞ (0)∪S, it follows that

σi converge to a holomorphic section σ∞ and ||·||i converge to a Hermitian norm
|| · ||∞ on M\F−1

∞ (0) ∪ S.16 Note that || · ||∞ is the Hermitian norm on K−1
M∞

associated to ω∞. Clearly, F∞ = ||σ∞||∞, in particular, σ∞ is bounded. One
can show that it extends to a holomorphic section of K−λM∞ on the regular part
M∞\S. For the reader’s convenience, we show how to do such an extension. This
extension is a local problem, so it suffices to extend σ∞ near each x ∈ M∞\S.
First we observe that (4.5) and (4.6) imply∫

M∞

logF∞ ωn∞ ≥ −C ′ > −∞, (4.7)

where C ′ is a uniform constant. Let (U ; z1, · · · , zn) be a local holomorphic
coordinates chart of M∞ near x, then as above, on U\F−1

∞ (0), we write

σ∞ = w∞

(
∂

∂z1
∧ · · · ∧ ∂

∂zn

)⊗λ
.

Since F∞ = ||σ∞||∞, by putting w∞ = 0 on U ∩ F−1
∞ (0), we get a continuous

function on U which is holomorphic outside F−1
∞ (0). Moreover, we have

|w∞| ≤ C̄ F∞. (4.8)

Let η : R 7→ [0, 1] be a cut-off function satisfying: η(t) = 0 if t ≤ 1, η(t) = 1 if
t ≥ 2 and |η′| ≤ 1. Then for any smooth function ϕ with closure of its support
contained in U , we have∫

U

w∞ ∂̄ϕ ωn∞ = lim
ε→0

∫
U

w∞ η(ε−1F∞) ∂̄ϕ ωn∞. (4.9)

Since F∞ is a Lipschtz function, by using (4.8) and integration by parts, the
right-handed side of (4.9) is bounded by a constant multiple of

lim
ε→0

∫
U∩{F∞≤2ε}

ωn∞ = 0.

16The singular set S may overlap with F−1
∞ (0) along a subset.
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Therefore, in the sense of distribution, we have

∂̄w∞ = 0 in U.

Thus by the standard elliptic theory, being continuous, w∞ extends to be a
holomorphic function on U , consequently, σ∞ extends to be a holomorphic
section of K−λM∞ and F∞ = ||σ∞||∞ outside S.

Next we exam the limit ofD under the convergence of (M,ωi). Since ||σi||i =
0 on D, the limit of D must lie in D∞, where D∞ denotes the zero set of F∞.
We claim that the limit of D coincides with D∞. If this is not true, there
are x ∈ D∞ and r > 0 such that B2r(x, d∞) ∩ D∞ is disjoint from the limit
of D. Choose xi ∈ M going to x as (M,ωi) converge to (M∞, d∞), then for
i sufficiently large, Br(xi, ωi) is disjoint from D, so lies in the smooth part
of (M,ωi). The regularity theory in [CCT02] implies that S ∩ Br(x, d∞) is
of complex codimension at least 2 and near a generic point y ∈ Br(x, d∞) ∩
D∞, σ∞ is holomorphic and defines D∞, moreover, the convergence of (M,ωi)
to (M∞, d∞) is in C∞-topology and σi converge to σ∞ near y , so σi must
vanish somewhere in Br(xi, ωi), a contradiction. This shows that the limit of
D coincides with D∞.

If β∞ = 1, the singular set S is of complex dimension at least 2 and σ∞ ∈
H0(M∞,K

−λ
M∞

) which consists of all holomorphic sections of K−λM∞ on M∞\S.
Then D∞ is simply the divisor {σ∞ = 0}.

Summarizing the above discussions, we have

Theorem 4.3. Let (M∞, ω∞), S etc. be as in Theorem 3.1. Then (M,ωi)
converge to (M∞, ω∞) in the C∞-topology outside a closed subset S̄ ∪ D∞,
where S̄ (possibly empty) is of codimension at least 4, and D converges to D∞
in the Gromov-Hausdorff topology. If β∞ < 1, S = S̄ ∪ D∞. If β∞ = 1,
S = S̄ and D∞ is a divisor of K−λM∞ .17

Remark 4.4. As an easy consequence of this theorem, we can also get the
smooth convergence to tangent cones: Let Cx be a tangent cone which is the limit
of (M∞, r

−2
i ω∞, x), then (M∞, r

−2
i ω∞, x) converge to Cx in the C∞-topology

outside its singular set Sx.
This can be seen as follows: If β∞ < 1, this is already clear in Section 3, or

more precisely, this follows from the proof of Theorem 3.1. If β∞ = 1, for any
y ∈ Cx\Sx18 and r sufficiently small, we have

Vol(Br(y, gx)) ≥ (c(n)− ε) r2n,

where ε is chosen to be small so that for any ȳ ∈ S,

Vol(Br(ȳ, ω∞)) ≤ (c(n)− 2ε) r2n.

17It follows from the partial C0-estimate in the next section that the same holds even if
β∞ < 1.

18By [TW12] or Appendix 2, Sx is of complex codimension at least 2.
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Let yi ∈M∞ with lim yi = y, then by the same arguments as those in the proof
of Theorem 3.1, for some N = N(ε) and r̄ = r/N , the ball Br̄(yi, r

−2
i ω∞) lies

entirely in the regular part of M∞, then the smooth convergence follows from a
result of Anderson [An90].

5 Partial C0-estimate

In this section, we prove Theorem 1.2. By our results on compactness of conic
Kähler-Einstein metrics in last two sections, we need to prove only the following:

Theorem 5.1. Let M be a Fano manifold M and D be a smooth divisor whose
Poincaré dual is λ c1(M). Let ωi be a sequence of conic Kähler-Einstein metrics
on M with cone angle 2πβi along D satisfying:

limβi = β∞ > 0 and 1− (1− β∞)λ > 0.

We also assume that (M,ωi) converge to a (possibly singular) conic Kähler-
Einstein manifold (M∞, ω∞) as described in Theorem 4.3. Then there are uni-
form constants ck = c(k, n, λ, β∞) > 0 for k ≥ 1 and `a → ∞ such that for
` = `a,

ρωi,` ≥ c` > 0. (5.1)

For the readers’ convenience, we recall the definition of ρωi,` as well as a few
facts.

Let Hi be the Hermitian metric on K−1
M associated to ωi, then we have an

induced inner product < ·, · >i on each H0(M,K−`M ) as follows:

< S, S′ >i =

∫
M

H`
i (S, S

′)ωni , ∀S, S′ ∈ H0(M,K−`M ).

Let {Sα}0≤α≤N be any orthonormal basis of H0(M,K−`M ) with respect to the
inner product < ·, · >i, then we have

ρωi,`(x) =

N∑
α=0

Hi(Sα, Sα)(x), (5.2)

We have shown in last section that the defining sections σi of D normalized
with respect to Hi converge to a holomorphic section σ∞ of K−λM∞ on either
M∞\S for β∞ < 1 or M∞\S ∪D∞ for β∞ = 1, satisfying: In any local coordi-
nates z1, · · · , zn outside S, we have

(det(gab̄))
λ |w|2 < ∞ (5.3)

where

σ∞ = w

(
∂

∂z1
∧ · · · ∧ ∂

∂zn

)⊗λ
and ω∞ =

√
−1

n∑
a,b=1

gab̄ dza ∧ dz̄b .
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Define a Hermitian metric H∞ on K−1
M∞

on M∞\S by

H∞ = H̃∞(σ∞, σ∞)
1−β
µ H̃∞. (5.4)

Here H̃∞ denotes the Hermitian metric induced by the determinant of ω∞. The
following can be easily proved.

Lemma 5.2. The Hermitian metrics Hi converge to H∞ on M∞\S in the
C∞-topology. Moreover, we have

H∞(σ∞, σ∞) < ∞ and

∫
M∞

H∞(σ∞, σ∞)ωn∞ = 1.

By a holomorphic section of K−`M∞ on M∞ (` > 0), we mean a holomor-

phic section σ of K−`M∞ on M∞\S with H∞(σ, σ) bounded. We denote by

H0(M∞,K
−`
M∞

) the space of all holomorphic sections of K−`M∞ on M . If M∞
is smooth outside a closed subset of codimension 4, then it coincides with the
definition we used in literature.

Applying Corollary 4.2 and standard arguments, we can prove:

Lemma 5.3. For any fixed ` > 0, if {τi} is any sequence of H0(M,K−`M )
satisfying: ∫

M

Hi(τi, τi)ω
n
i = 1,

then a subsequence of τi converges to a section τ∞ in H0(M∞,K
−`
M∞

).

Furthermore, since ρωi,` are uniformly continuous, it follows from Lemma
5.3 that a subsequence of them converges to a continuous function on M∞.19

We note that if (5.1) holds for `, so does for `k for any k ≥ 2. This can be
easily verified by using the definition of ρωi,` and Corollary 4.2. Therefore, in
order to prove Theorem 5.1, we only need to show that there is an ` such that,

inf
i

inf
x∈M

ρωi,`(x) > 0. (5.5)

Next we claim that (5.5) follows from the following: For any x ∈M∞, there
is an ` = `x and a sequence xi ∈M such that limxi = x and

inf
i
ρωi,`(xi) > 0. (5.6)

For the readers’ convenience, we show how to derive (5.5) from this claim: Given
any x ∈ M , by using the estimate in Corollary 4.2 and (5.6), there is a r = rx
such that

inf
i

inf
Br(xi,ωi)

ρωi,` > 0.

Since M∞ is compact, there are finitely many x = xa, ` = `a and r = ra as
above (a = 1, · · · , k) such that the balls Bra(xa, ω∞) cover M∞. Then (5.5)
holds for ` = `1 · · · `k. Hence, it suffices to prove (5.6).

19In fact, the limit is equal to ρω∞,` as shown in the end of this section.
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The following lemma provides the L2-estimate for ∂̄-operator on (M,ωi). It
can be proved by using the smooth approximations of ωi constructed in Theorem
2.6.

Lemma 5.4. For any ` > 0, if ζ is a (0,1)-form with values in K−`M and ∂̄ζ = 0,

there is a smooth section ϑ of K−`M such that ∂̄ϑ = ζ and∫
M

||ϑ||2i ωni ≤
1

`+ µ

∫
M

||ζ||2i ωni ,

where || · ||i denotes the norm induced by Hi and ωi.

We have seen that for any rj 7→ 0, by taking a subsequence if necessary, we
have a tangent cone Cx of (M∞, ω∞) at x, which is the limit of (M∞, r

−2
j ω∞, x)

in the Gromov-Hausdorff topology, satisfying:

T1. Each Cx is regular outside a closed subcone Sx of complex codimension at
least 1. Such a Sx is the singular set of Cx;

T2. There is an natural Kähler Ricci-flat metric gx on Cx\Sx which is also a
cone metric. Its Kähler form ωx is equal to

√
−1 ∂∂̄ρ2

x on the regular part of
Cx, where ρx denotes the distance function from the vertex of Cx, denoted by o.

We will denote by Lx the trivial bundle Cx × C over Cx equipped with the
Hermitian metric e−ρ

2
x | · |2. The curvature of this Hermitian metric is given by

ωx.
Recall that Sk (k = 0, 1, · · · , 2n − 1) consists of points in M∞ for which

no tangent cone splits off a factor, Rk+1, isometrically. Then it was shown in
[CC95]

S2n−1 = ∅, S0 ⊂ · · · ⊂ S2n−2 = S and dimSk ≤ k.
The following lemma is a consequence of Theorem 3.2 and [CCT02].

Lemma 5.5. We have For any x ∈ S2n−2\S2n−4, we have

(1) S2k+1 = S2k for k = 0, · · · , n− 1 and if x ∈ S2n−2, then Cx = Cn−1 × C′x
and gx is a product of the Euclidean metric on Cn−1 with a flat conic metric on
C′x of angle 2πβ̄;

(2) If x ∈ S2n−4 and Sx is of complex codimension 1, then there is a subcone
S̄x ⊂ Sx of complex codimension at least 2 such that a tangent cone of (Cx, gx)
at y is isometric to a product of the Euclidean metric on Cn−1 with a flat conic
metric on C′x of angle 2πβ̄;

(3) There is a β̄∞ depending only on the diameter and volume of (M∞, ω∞)
such that β̄∞ ≤ β̄ ≤ β∞ for β̄ in (1) and (2);

(4) If β∞ < 1, then (1 − β̄) = m(1 − β∞) for β̄ in (1) and (2), in particular,
there are only finitely many such β̄’s.

Proof. (1) and (2) follow from Theorem 9.1 in [CCT02]. (3) follows from the
Bishop-Gromov volume comparison. (4) follows from Theorem 3.2, C4.
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Remark 5.6. Using a local version of the partial C0-estimate (cf. Appendix
1), one can actually prove that S̄x is closed. But we do not need this property
in proving the partial C0-estimate, and consequently, Theorem 1.1.

Now we fix some notations: For any ε > 0, we put

V (x; ε) = { y ∈ Cx | y ∈ Bε−1(0, gx) \Bε(0, gx), d(y,Sx) > ε },

where BR(o, gx) denotes the geodesic ball of (Cx, gx) centered at the vertex and
with radius R.

If Cx has isolated singularity, then Sx = {o} and

V (x; ε) = { y ∈ Cx | y ∈ Bε−1(0, gx) \Bε(0, gx) }.

Let {rj} be any sequence such that r−2
j are integers and (M∞, r

−2
j ω∞, x) con-

verges to (Cx, gx, o). By [CCT02], for any ε > 0 and δ > 0, we can have a
j0 = j0(ε, δ) such that for each j ≥ j0, there is a diffeomorphisms φ : V (x; ε4 ) 7→
M∞\S, where S is the singular set of M∞, satisfying:

(1) d(x, φ(V (x; ε))) < 10 εr and φ(V (x; ε)) ⊂ B(1+ε−1)r(x), where r = rj and
BR(x) denotes the geodesic ball of (M∞, ω∞) with radius R and center at x;

(2) If g∞ is the Kähler metric with the Kähler form ω∞ on M∞\S, then

||r−2φ∗g∞ − gx||C6(V (x; ε2 )) ≤ δ, (5.7)

where the norm is defined in terms of the metric gx.

Lemma 5.7. Given ε > 0 and any sufficiently small δ > 0, there are a suffi-
ciently large ` = r−2, a diffeomorphism φ : V (x; ε4 ) 7→ M∞\S with properties
(1) and (2) above, and an isomorphism ψ from the trivial bundle Cx × C onto
K−`M∞ over V (x; ε) commuting with φ satisfying:

||ψ(1)||2 = e−ρ
2
x and ||∇ψ||C4(V (x;ε)) ≤ δ, (5.8)

where || · || denotes the induced norm on K−`M∞ by ω∞, ∇ denotes the covariant

derivative with respect to the metrics || · ||2 and e−ρ
2
x | · |2.

Proof. The arguments are pretty standard, so we just give an outlined proof.
Let {rj} be as above such that (M∞, r

−2
j ω∞, x) converges to (Cx, gx, o).

Assume ε′ < ε determined later. Then there are diffeomorphisms φj : V (x; ε
′

4 ) 7→
M∞\S satisfying:

d(x, φj(V (x; ε′))) < 10 ε′rj , φj(V (x; ε′)) ⊂ B(1+ε′−1)rj (x)

and
lim
j→∞

||r−2
j φ∗jg∞ − gx||C6(V (x; ε

′
2 )) = 0.

We cover V (x; ε′) by finitely many geodesic balls Bsα(yα) (1 ≤ α ≤ N)
satisfying:
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(i) The closure of each B2sα(yα) is strongly convex and contained in Cx\Sx;.

(ii) The half balls Bsα/2(yα) are mutually disjoint;

(iii) sα ≥ νx d(yα,Sx), where νx is a constant depending only on V (x, ε).20

We will first set ` = `j = r−2
j and φ = φj when j is sufficiently large and

construct ψ.
First we construct ψ̃α over each B2sα(yα). For any y ∈ B2sα(yα), let γy ⊂

B2sα(yα) be the unique minimizing geodesic from yα to y. We define ψ̃α as
follows: First we define ψ̃α(1) ∈ L|φ(yα) such that

||ψ̃α(1)||2 = e−ρ
2
x(yα),

where L = K−`M∞ . Next, for any y ∈ Uα, where Uα = B2sα(yα), define

ψ̃α : C 7→ L|y, ψ̃α(a(y)) = τ(φ(y)),

where a(y) is the parallel transport of 1 along γy with respect to the norm

e−ρ
2
x | · |2 and τ(φ(y)) is the parallel transport of ψ(1) along φ ◦ γy with respect

to the norm || · ||2.
Clearly, we have the first equation in (5.8). The estimates on derivatives can

be done as follows: If a : Uα 7→ Uα × C and τ : Uα 7→ φ∗L|Uα are two sections
such that ψ̃α(a) = τ , then we have the identity:

∇τ = ∇ψ̃α(a) + ψ̃α(∇a),

where ∇ denote the covariant derivatives with respect to the given norms on
line bundles Cx × C and L. By the definition of ψ̃α, one can easily see that
∇ψ̃α(yα) ≡ 0. To estimate ∇ψ̃α at y, we differentiate along γy to get

∇T∇Xτ = ∇T (∇X ψ̃α(a)) + ψ̃α(∇T∇Xa),

where T is the unit tangent of γy and X is a vector field along γy with [T,X] = 0.

Here we have used the fact that ∇T ψ̃α = 0 which follows from the definition of
ψ̃α. Using the curvature formula and the fact that a is parallel along γy, we see
that it is the same as

` φ∗ω∞(T,X) ψ̃α(a) = ∇T (∇X ψ̃α(a)) + ωx(T,X) a.

Using the fact that ωx is the limit of iφ∗ω∞ as i tends to∞, we can deduce from
the above that ∇T (∇X ψ̃α(a)) is sufficiently small so long as ` = `j is sufficiently

large. Since ∇X ψ̃α = 0 at yα, we see that ||∇ψ̃α||C0(Uα) can be made sufficiently
small. The higher derivatives, say up to order 6, can be bounded inductively in
a similar way.

20Property (iii) is not needed in the subsequent proof. For proving this lemma, we may
simply take a cover of V (x; ε′) by balls of comparable size such that (i) holds and choose j
sufficiently large.
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Next we want to modify each ψ̃α. For any α, β, we set

θαγ = ψ̃−1
α ◦ ψ̃γ : Uα ∩ Uγ 7→ S1.

Clearly, we have
θακ = θαγ · θγκ on Uα ∩ Uγ ∩ Uκ,

so we have a closed cycle {θαγ}. By the derivative estimates on each ψ̃α, we

know that each θαγ is close to a constant. Therefore, we can modify ψ̃α’s such
that each transition function θαγ is a unit constant, that is, we can construct

ζα : Uα 7→ S1 such that if we replace each ψ̃α by ψ̃α · ζα, the corresponding
transition functions are constant. Moreover we can dominate ||∇ζα||C4 by the
norm ||∇ψ̃α||C5 (possibly) on a slightly larger ball.

The cycle {θαγ} of constants gives rise to a flat bundle F , and we have
constructed an isomorphism

ξ : F 7→ K−`M∞

over an neighborhood of V (x; ε′) satisfying all the estimates in (5.8).
If we replace ` by k`, we get an analogous isomorphism

ξk : F k 7→ K−k`M∞
.

We want to choose k to get the required `, φ and ψ. Set

U(x; ε′, ε) = { y ∈ Cx |
√
ε′ < ρx(y) < ε−1, ȳ ∈ Eε },

where y = ρx(y) ȳ and Eε ⊂ ∂B1(o, gx)\Sx is an open submanifold containing
all z̄ ∈ ∂B1(o, gx)) with

d̄(z̄,Sx ∩ ∂B1(o, gx)) ≥ ε2,

where d̄(·, ·) denotes the distance function on ∂B1(o, gx). Furthermore, we can
choose Eε such that its topology depends only on ε and Sx.

Assume that ε′ is sufficiently such that U(x; ε′, ε) ⊂ V (x; ε′).
Since the flat bundle F |U(x;ε′,ε) is given by a representation

ρ : π1(U(x; ε′, ε)) = π1(Eε) 7→ S1.

Note that ρ is the pull-back of a homomorphism ρ̄ : H1(Eε,Z) 7→ S1 through
the natural projection: π1(Eε) 7→ H1(Eε,Z). Clearly, H1(Eε,Z) is the sum of
an abelian group of finite rank m and a finite group of order ν. Observing that
m and ν depend only on ε and Sx, there is an k, which may depend on m, ν
and δ, such that F k is essentially trivial on the scale of δ, i.e., the corresponding
transition functions are in a δ′-neighborhood of the identity in S1, where δ′s
depends only on and much smaller than δ.

We reset ` to be the k-multiple of the initial `. If ε′ is much smaller than ε
and k−1, we have

k−
1
2V (x; ε) := { y ∈ Cx | ε <

√
k ρx(y) < ε−1,

√
k d(y,Sx) > ε } ⊂ U(x; ε′, ε).
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We can redefine φ as the composition of the scaling map y 7→ k−1y : Cx 7→ Cx
and the initial φ. Then this newer φ maps V (x; ε) onto k−

1
2V (x; ε). Since

(M∞, kr
−2
j ω∞, x) still converge to the cone (Cx, gx, x), this newer φ satisfies

properties (1) and (2) required by our above discussions if j is sufficiently large.
Thus, we can apply the above for this newer φ to get corresponding ψ̃α, F etc..
The newer flat bundle F , which is the same as F k for older φ, has transition
functions in a δ′-neighborhood of the identity in S1

By modifying ψ̃α restricted to Eε, we can construct a bundle isomorphism
ζ : Cx × C 7→ F over Eε whose norm is bounded by a constant much smaller
than δ. This ζ extends trivially to an isomorphism over U(x; k−1/2ε2, k1/2ε)
with controlled norm. It follows that ψ = ξk · ζ gives the required isomorphism
between Cx×C and K−`M∞ over φ(V (x; ε)). This completes a proof of this lemma.

In the above lemma, k may depend on x, or more precisely, Cx. There is
another approach to choosing k which depends only on n and β∞. The key is
to show that Cx\S̄x has finite fundamental group of order ν ≥ 1 which depends
only on n. Then we just need to take ` to be a multiple of ν such that `β∞ is
sufficiently close to 1 modulo Z.

Now we prove (5.6), consequently, the partial C0-estimate for conic Kähler-
Einstein metrics. As for smooth Kähler-Einstein metrics, we will apply the L2-
estimate to proving (5.6). The method is standard now and resembles the one
we used for Del-Pezzo surfaces in [Ti90]. First we construct an approximated
holomorphic section τ̃ on M∞, then one can perturb it into a holomorphic
section τ by the L2-estimate for ∂̄-operators, finally, one uses the derivative
estimate in Corollary 4.2 to conclude that τ(x) 6= 0. These steps are similar to
those used in [DS14] as well as [Ti13] in establishing the partial C0-estimate for
smooth Kähler-Einstein metrics.

Let ε > 0 and δ > 0 be sufficiently small and be determined later. We fix
` = r−2, where r = rj for a sufficiently large j, such that Lemma 5.7 holds for
`, ε and δ. Choose φ and ψ by Lemma 5.7, then there is a section τ = ψ(1) of
K−`M∞ on φ(V (x; ε)) satisfying:

||τ ||2 = e−ρ
2
x . (5.9)

By Lemma 5.7, for some uniform constant C, we have

||∂̄τ || ≤ C δ. (5.10)

Now let us state a technical lemma.

Lemma 5.8. For any ε̄ > 0, there is a smooth function γε̄ on Cx satisfying:

(1) γε̄(y) = 1 if d(y,Sx) ≥ ε̄, where d(·, ·) is the distance of (Cx, gx) ;

(2) 0 ≤ γε̄ ≤ 1 and γε̄(y) = 0 in an neighborhood of Sx;
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(3) |∇γε̄| ≤ C for some constant C = C(ε̄) and∫
Bε̄−1 (o,gx)

|∇γε̄|2 ωnx ≤ ε̄.

Proof. This is rather standard and has been known to me for quite a while.
The arguments are based on known techniques: First we prove this lemma in a
simple case, then we reduce the general case to this case by using partial C0-
estimate already established. But the arguments are tedious and lengthy, so we
will refer the readers to Appendix 1 for its complete proof. Here we only prove
this lemma in a simple case and explains briefly why Lemma 5.8 should be true
in general.

A key reason is the fact that the Poincaré metric on a punctured disc has
finite volume.

Consider the simple case: Sx = Cn−1, i.e., Cx is of the form Cn−1 × C′x,
where C′x is biholomorphic to C, moreover, the cone metric gx coincides with
the standard cone metric

gβ̄ =

n−1∑
i=1

dzidz̄i + (dρ2 + β̄2ρ2dθ2),

where z1, · · · , zn−1 are coordinates of Cn−1 and 0 < β̄ < β∞, e.g., one of them
in Lemma 5.5, (3) or (4). Clearly, ρ = d(y,Sx).

We denote by η a cut-off function: R 7→ R satisfying: 0 ≤ η ≤ 1, |η′(t)| ≤ 1
and

η(t) = 0 for t > log(− log δ̄3) and η(t) = 1 for t < log(− log δ̄).

Here δ̄ < 1/3 is to be determined. Now we define as follows: If ρ(y) ≥ ε̄, put
γε̄(y) = 1 and if ρ(y) < ε̄

γε̄(y) = η

(
log

(
− log

(
ρ(y)

ε̄

)))
.

Clearly, γε̄ is a smooth function and we have

γε̄(y) = 1 if ρ(y) ≥ δ̄ε̄ and γε̄(y) = 0 if ρ(y) ≤ δ̄3ε̄.

Furthermore, the support of |∇γε̄|(y) = 0 is contained in the region where
δ̄3ε̄ < ρ(y) < δ̄ε̄. In the region, we have

|∇γε̄| ≤
1

ρ(− log ρ
ε̄ )
.

It follows that∫
Bε̄−1 (o,gx)

|∇γε̄|2 ωnx ≤
an−1

ε̄2n−2

∫ δ̄

δ̄3

dr

r(− log r)2
≤ an−1

ε̄2n−2(− log δ̄)
,
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where an−1 denotes the volume of the unit ball in R2n−2.
Now choose δ̄ such that an−1 ≤ ε̄2n−1(− log δ̄), then we have∫

Bε̄−1 (o,gx)

|∇γε̄|2 ≤ ε̄.

Clearly, we also have |∇γε̄| ≤ C for some C = C(ε̄).
In general, we know from Section 3 that Sx is a union of S0

x and S̄x, where
S̄x is a subcone of complex codimension at least 2 and S0

x consists of all y ∈ Sx
such that a tangent cone of (Cx, gx) at y is Cn−1 ×C′y with the standard metric
gβ̄ .

Using the fact that S̄x is of complex codimension at least 2, we can use
standard methods to construct a function χ with required properties (1)-(3) in
an neighborhood U of S̄x ∩Bε−1(x, gx) such that it is equal to 1 near ∂U . Then
χ vanishes in an open neighborhood B and B̄ ⊂ U .

For each y ∈ Sx\B, there is a tangent cone Cy as that in the simple case
we have considered above, so we can use the arguments in rest of this section
to establish the partial C0-estimate near y. This in turns gives some structure
results for Cx near y and allows us to use the construction in the above simple
case to get a function γy with required properties (1)-(3) on B2r(y)(y, gx). Since
Sx\B is compact, we can cover it by finitely many balls Br(yb)(yb, gx), then our
γ will be obtained by using χ, those γyb ’s and a partition of unit associated to
U and B2r(yb)(yb, gx)’s.

The detailed arguments along this line will be presented in Appendix 1.

Now, assuming Lemma 5.8, we continue the proof of the partial C0-estimate.
First we define η to be a cut-off function satisfying:

η(t) = 1 for t ≤ 1, η(t) = 0 for t ≥ 2 and |η′(t)| ≤ 1.

Let δ0 > 0 be determined later. Choose ε̄ such that γε̄ = 1 on V (x; δ0). Then
we choose ε such that δ > 4 ε and V (x; ε) contains the support of γε̄ constructed
in Lemma 5.8. Clearly, we can make ε̄ as small as we want if ε is sufficiently
small.

We define for any y ∈ V (x; ε)

τ̂(φ(y)) = η
(
2 ε
(
ρx(y) + ρx(y)−1

))
γε̄(y) τ(φ(y)). (5.11)

It is easy to see that τ̂ vanishes near the boundary of φ(V (x; ε)), therefore, it
extends to a smooth section of K−`M∞ on M∞. Using that δ0 > 4ε and the
definition of the cut-off function η, we deduce from (5.11)

τ̂ = τ on φ(V (x; δ0)). (5.12)

By a direct computation, we derive from (5.10) and (5.11)∫
M∞

||∂̄τ̂ ||2∞ ωn∞ ≤ ν r2n−2, (5.13)
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where || · ||∞ denotes the Hermitian norm associated to ω∞ and ν = ν(δ, ε),
which can be made as small as we want so long as δ, ε and ε̄ are sufficiently
small. Moreover, we have∫

M∞

||τ̂ ||2∞ ωn∞ ≤
∫
φ(V (x;ε))

e−ρ
2
x ωn∞ < ∞. (5.14)

Clearly, the support of τ̂ stays outside the singular set S of M∞. We will
modify τ̂ to get a newer section τ̃ with support away from D∞. If β∞ < 1,
then S contains D∞ and consequently, we can take τ̃ = τ̂ . If β∞ = 1, D∞ is a
divisor defined by a holomorphic section σ∞ of K−λM∞ . Put ρ = ||σ∞||∞. Let η̄
be a cut-off function: R 7→ R satisfying: 0 ≤ η̄ ≤ 1, |η̄′(t)| ≤ 1 and

η̄(t) = 0 for t > log(− log ε̂2) and η̄(t) = 1 for t < log(− log ε̂).

Now we define τ̃ by

τ̃(z) = η̄ (log (− log ρ(z))) τ̂(z).

Then τ̃ supports away from S ∪D∞ and coincides with τ on {ρ ≥ ε̂}. When ε̂
is sufficiently small, we can deduce from (5.13) and standard computations∫

M∞

||∂̄τ̃ ||2∞ ωn∞ ≤ 2 ν r2n−2. (5.15)

Of course, this is automatically true if β∞ < 1.
Set U(x; ε) to be φ(V (x; ε)) if β∞ < 1 and φ(V (x; ε))\{z | d∞(z,D∞) ≤ ε} if

β∞ = 1, where d∞(·, D∞) denotes the distance from D∞ with respect to ω∞.
We choose ε̂ such that τ̃ = τ on U(x; δ0). Clearly, the support of τ̃ is contained
in U(x; ε) if ε is sufficiently small.

Note that (M\D,ωi) converge to (M∞\S ∪ D∞, ω∞) and the Hermitian
metrics Hi on K−1

M converge to H∞ on M∞\ (S ∪D∞) in the C∞-topology.
Therefore, for a sequence δi > 0 with lim δi = 0, there are diffeomorphisms

φ̃i : M∞\Ti (S ∪D∞) 7→ M\Ti(D)

and smooth isomorphisms

Fi : K−`M∞ 7→ K−`M

over M∞\Ti (S ∪D∞), where

Ti(D) = {x ∈M | di(x,D) ≤ δi}

and
Ti (S ∪D∞) = {x ∈M∞ | d∞(x,S ∪D∞) ≤ δi},

where di(·, D) (resp. d∞(·,S ∪D∞)) denotes the distance from D with respect
to the metric ωi (resp. ω∞), satisfying:
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C1: φ̃i(M∞\Ti (S ∪D∞)) ⊂ M\Ti(D);

C2: πi ◦ Fi = φ̃i ◦ π∞, where πi and π∞ are corresponding projections;

C3: ||φ̃∗iωi − ω∞||C2(M∞\Ti(S∪D∞)) ≤ δi;

C4: ||F ∗i Hi −H∞||C4(M∞\Ti(S∪D∞)) ≤ δi.

We may assume i sufficiently large so that U(x; ε) ⊂ M∞\Ti (S ∪D∞).

Put τ̃i = Fi(τ̃), then it follows from the definition of τ̃

τ̃i = Fi(τ) on φ̃i(U(x; δ0)). (5.16)

Because of (5.15), for i sufficiently large, we have∫
Mi

||∂̄τ̃i||2i ωni ≤ 3 ν r2n−2, (5.17)

where || · ||i denotes the Hermitian norm corresponding to Hi.
By the L2-estimate in Lemma 5.4, we get a section vi of K−`M such that

∂̄vi = ∂̄τ̃i

and ∫
M

||vi||2i ωni ≤
1

`

∫
M

||∂̄τ̃i||2i ωni ≤ 3 ν r2n.

Here we have used the fact that ` = r−2.
Put σi = τ̃i − vi, it is a holomorphic section of K−`M . Using (5.14), the

L2-estimate on vi and the definition of τ̃i, we can easily show∫
M∞

||σi||2i ωni ≤ C, (5.18)

where C is independent of i. It follows from (5.16) and (5.10) that the C2-norm
of ∂̄vi on φ̃i(U(x; δ0)) is bounded from above by c δ for a uniform constant c.
By the standard elliptic estimates, we have

sup
φ̃(U(x;2δ0)∩φ(B10(o,gx)))

||vi||2i ≤ C (δ0r)
−2n

∫
M

||vi||2i ωni ≤ C δ−2n
0 ν. (5.19)

Note that we always use C to denote a uniform constant. For any given δ0, if δ
and ε are sufficiently small, then we can make ν so small that

8C ν ≤ δ2n
0 .

Then we can deduce from (5.16), (5.9) and (5.16)

||σi||i ≥ ||Fi(τ)||i − ||vi||i >
1

3
on φ̃i(U(x; δ0) ∩ φ(B10(o, gx))). (5.20)
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On the other hand, by applying the derivative estimate in Corollary 4.2 to σi,
we get

sup
M
||∇σi||i ≤ C ′`

n+1
2

(∫
M

||σi||2i ωni
) 1

2

≤ C ′ r−1. (5.21)

By our choice of φ, if ε is sufficiently small compared to δ0, for some u ∈
∂B1(o, gx), we have

d(x, φ(2δ0u)) ≤ d(x, φ(εu)) + d(φ(εu), φ(2δ0u)) ≤ 10 δ0 r.

If i is sufficiently large, we deduce from (5.20) and (5.21)

||σi||i(xi) ≥
1

3
− C ′ δ0,

it follows that if we choose δ0 such that C ′δ0 < 1/8, then ||σi||i(xi) > 1/8.
Combining with (5.18), we see that (5.6) holds. therefore, Theorem 1.2, i.e., the
partial C0-estimate for conic Kähler-Einstein metrics, is proved.

As indicated in [Ti10] and verified in [DS14] for smooth Kähler-Einstein met-
rics (also see [Li12]), by the arguments in the proof of the partial C0-estimate,
we can prove the following regularity for M∞:

Theorem 5.9. The Gromov-Hausdorff limit M∞ is a normal variety embedded
in some CPN whose singular set is a subvariety S̄ of complex codimension at
least 2.21 If β∞ < 1, S is a subvariety consisting a divisor D∞ and a subvariety
S̄ of complex codimension at least 2. If β∞ = 1, S = S̄. Moreover, D∞ is the
limit of D under the Gromov-Hausdorff convergence.

Proof. For the readers’ convenience, we include a proof. Let us recall some
well-known facts (cf, [Ti10]). For any i and sufficiently large `, we can choose
an orthonormal basis {σi,`} of H0(M,K−`M ) with respect to ωi and use this to
define a Kodaira embedding

ψi,` : M 7→ CPN` , where N` + 1 = dimH0(M,K−`M ).

By using the L2-estimate for ∂̄-operator, we can find an exhaustion of M∞\S by
open subsets V1 ⊂ V2 ⊂ · · · ⊂ V` ⊂ · · · such that ψi,` converge to an embedding

ψ∞,` : V` ⊂M∞ 7→ CPN` .

By the partial C0-estimate, there is an integer m > 0 such that for any ` = mk,
ψi,` converge to an extension of ψ∞,` on M∞ under the convergence of (M,ωi)
to (M∞, ω∞). We still denote this extension by

ψ∞,` : M∞ 7→ CPN` .
21The normality was not necessary for proving Theorem 1.1. In all the applications I know,

it suffices to have that S̄ is a subvariety of complex codimension 2.
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By the estimate in Corollary 4.2, ψi,` are uniformly Lipschtz, so ψ∞,` is a
Lipschtz map.

Claim: M∞ is a variety.

For this, we only need to show that for k ≥ n+1, ψ∞,` is a homeomorphism from
M∞ onto its image which is also the limit of complex submanifolds ψi,`(M) ⊂
CPN` .

By the same arguments as those in proving the partial C0-estimate, we can
show: For any r > 0, there are k(r) and s(k) such that if k ≥ k(r), then for any
x, y ∈M such that di(x, y) ≥ r, where di(·, ·) denotes the distance of the metric
ωi, there is a holomorphic section ςi ∈ H0(M,K−`M ), where ` = mk, satisfying:∫

M

||ςi||2iωni = 1 and |||ςi||i(x) − ||ςi||i(y)| ≥ s(k). (5.22)

The above claim follows from this and the effective finite generation of the
anti-canonical ring of M as shown in the thesis of Chi Li [Li12]. 22 For the
orthonormal basis {σi,a}0≤a≤Nm of H0(M,K−mM ) with respect to ωi, by the
partial C0-estimate and Corollary 4.2, we have

c(m) ≤
Nm∑
a=0

||σi,a||2i ≤ c(m)−1, (5.23)

where c(m) is a uniform constant independent of i.

Lemma 5.10. For any l ≥ 1 and ς ∈ H0(M,K
−(n+1+l)m
M ), there are h0, · · · , hNm

in H0(M,K
−(n+l)m
M ) satisfying:

ς =

Nm∑
a=0

ha σi,a and

∫
M

||ha||2i ωni ≤ C(m, l)

∫
M

||ς||2i ωni , (5.24)

where C(m, l) is a constant depending only on c(m), l and n.

This is due to Chi Li (see [Li12], Proposition 7). He proved this by using
the Skoda-Siu type estimate (see [Siu08], 2.4).

Note that for any x ∈M∞ and k ≥ 1, we have

ψ−1
∞,mk(ψ∞,mk(x)) ⊆ ψ−1

∞,m(ψ∞,m(x)). (5.25)

Using this and Lemma 5.10 with i→∞, we get

ψ−1
∞,m(n+1+l)(ψ∞,m(n+1+l)(x)) ⊇ ψ−1

∞,m(n+1)(ψ∞,m(n+1)(x)).

It follows from (5.22) that for any x 6= y ∈M∞,

ψ∞,m(n+1+l)(x) 6= ψ∞,m(n+1+l)(y)

22As I advocated in many occasions before (cf. [Ti10]), the partial C0-estimate corresponds
to an effective version of the finite generation of the anti-canonical ring. Chi Li showed
precisely in [Li12] how this works.
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if l is sufficiently large. Therefore, we can get

ψ∞,m(n+1)(x) 6= ψ∞,m(n+1)(y).

This implies that ψ∞,m(n+1) is a homeomorphism, so M∞ is a variety.
There is another way of proving that ψ∞,mk is a homeomorphism for k

sufficiently large. By (5.25), the composition ψ∞,m · ψ−1
∞,mk is a well-defined

map from the variety Ymk onto Ym, where

Ymk = lim
i→∞

ψi,mk(M) ⊂ CPNmk , Ym = lim
i→∞

ψi,m(M) ⊂ CPNm .

Moreover, this map is also the limit of holomorphic maps ψi,m · ψ−1
i,mk, so it

is a holomorphic map. Since ψ∞,m restricted to Vm is an embedding for m
sufficiently large, we know that ψ∞,mk(ψ−1

∞,m(z)) is either a point or a connected
subvariety in the complex limit space Ymk. The second case can be ruled out
by using the fact that there is a bounded function u such that

1

mk
ωFS |Ymk =

1

m
(ψ∞,m · ψ−1

∞,mk)∗(ωFS |Ym) +
√
−1 ∂∂̄ u,

where ωFS always denotes the Fubini-Study metric. This again shows that M∞
is a variety.

By Theorem 4.3, D converges to a divisor D∞ in M∞. Clearly, ψ∞,m(n+1)(S)
contains the singular subvariety S̄ and ψ∞,m(n+1)(D∞) is a divisor of the variety
ψ∞,m(n+1)(M∞). We will identify M∞ with ψ∞,m(n+1)(M∞). We claim that S
coincides with S̄ if β∞ = 1 and S̄ ∪D∞ if β∞ < 1. This can be seen as follows:
By the partial C0-estimate, we have a continuous function ϕ, which is smooth
outside S, such that

ω∞ =
1

`
ωFS |M∞ +

√
−1 ∂∂̄ϕ, ωFS |M∞ ≤ C ω∞, where ` = m(n+ 1).

Furthermore, we have(
1

`
ωFS |M∞ +

√
−1 ∂∂̄ ϕ

)n
= ||σ∞||−2(1−β∞)

0 e−µ∞ ϕ Ω,

where σ∞ is a defining section of D∞, µ∞ = 1− (1− β∞)λ and Ω is a volume
form with curvature 1

`ωFS and corresponding to a Hermitian metric || · ||0 on

K−1
M∞

.

Near any x outside S̄ if β∞ = 1 or S̄ ∪ D∞ if β∞ < 1, the right side
of above equation is smooth and consequently, ω∞ is equivalent to ωFS near
x. Hence, the regularity theory for complex Monge-Ampere equations on high
order derivatives implies that ϕ is smooth near x and x is outside S. Our claim
is proved. Note that S̄ (resp. S̄\D∞) is of complex codimension at least 2 if
β∞ = 1 (resp. β∞ < 1).

Next we prove that M∞ is normal. First we claim that M∞ is locally con-
nected. This implies that the singularity of M∞ is of complex codimension at
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least 2. If β∞ = 1, it is trivially true since the singular set of M∞ is of complex
codimension at least 2. So we may assume β∞ < 1. There are several ap-
proaches. One can use a local version of the Cheeger-Gromoll splitting theorem
(cf. [An90]). One can also generalize the arguments I had in [Ti90] or use the
Cheeger-Colding theory.

We have shown that the singular set S of (M∞, ω∞) is a subvariety made of
the divisor D∞ possibly plus a subvariety S̄ which is of complex codimension at
least 2 outside D∞. Therefore, if the claim is false, then M∞\D∞ is not locally
connected near a point, say x, in D∞ such that a tangent cone Cx of M∞ at x
is of the form Cn−1 × C′x, where C′x is a 2-dimensional flat cone of angle 2πβ̄.
However, Cx\Sx is connected, so M∞\D∞ is connected near x, a contradiction.
Therefore, M∞ must be locally connected.

Note that the claim can be also deduced from a result of Colding-Naber who
proved the convexity of M∞\S.

To conclude that M∞ is normal, we may assume that M∞ ⊂ CPN and prove
that the affine variety V = M∞\H is normal for any hyperplane H ⊂ CPN . By
the general theory in algebraic geometry, we have a normalization π : U 7→ V ,
moreover, U is also an affine variety in some Cm and π is a finite morphism
which is an isomorphism on π−1(V \S). Any coordinate function zi of Cm
(i = 1, · · · ,m) restricts to a holomorphic function fi on V \S. Since S is of
complex codimension 2, we can show that fi is bounded. By using this and the
formula for ∆|fi|2, we can deduce that |∂fi|2 is locally integrable. Next, as we
did in deriving the partial C0-estimate, we can show that |dfi| is bounded on
any compact subsets. Hence, all fi (i = 1, · · · ,m) extend to Lipschtz functions
on V . This implies that V = U , so V , and consequently, M∞, is normal.

Of course, one can further analyze the finer asymptotic structure of ω∞ along
D∞. For instance, we can show that ω∞ is a conic Kähler-Einstein metric with
cone angle 2πβ̄ along D∞ in a weaker sense23. It is an interesting problem to
examine the precise behavior of ω∞ along D∞.

6 Proving Theorem 1.1

In this section, we complete the proof of Theorem 1.1, i.e., if a Fano manifolds
M is K-stable, then it admits a Kähler-Einstein metric. As I pointed out in
describing my program on the existence of Kähler-Einstein metrics, the method
of deriving Theorem 1.1 from the partial C0-estimate in the context of the Aubin
continuity method had been known to me for a long time (cf. [Ti10]). Here, we
adapt the argument to the context of the Donaldson-Li-Sun continuity method.

As mentioned in the introduction, the key for proving Theorem 1.1 is to
establish the C0-estimate for the solutions of the complex Monge-Ampere equa-
tions for β > 1− λ−1 :

(ωβ +
√
−1∂∂̄ ϕ)n = ehβ−µϕωnβ , (6.1)

23The angle 2πβ̄ may be different on different connected components of D∞.

36



where ωβ is a suitable family of conic Kähler metrics with [ωβ ] = 2πc1(M) and
cone angle 2πβ along D and hβ is determined by

Ric(ωβ) = µω + 2π(1− β) [D] +
√
−1 ∂∂̄hβ and

∫
M

(ehβ − 1)ωnβ = 0.

Let E be the set of β ∈ (1 − λ−1, 1] such that (6.1) has a solution ϕβ . By the
discussion in the introduction, we know that E is a non-empty and open interval
E = (1 − λ−1, β̄) for some β̄ ≤ 1 or (1 − λ−1, 1]. Actually, such a solution ϕβ
is unique, so {ϕβ} is a continuous family on M and smooth outside D. 24 If we
can prove that E is closed, then E = (1− λ−1, 1] and the proof of Theorem 1.1
is completed. We will use the K-stability to derive a contradiction if E is not
closed.

Now assume E = (1 − λ−1, β̄) for some β̄ ≤ 1. We claim: If β̄ is not in
E, ||ϕβ ||C0 diverge to ∞ as β tends to β̄. If ||ϕβ ||C0 are uniformly bounded,
then we can apply the results in [JMR11] to get a uniform C2,γ-estimate for
ϕβ for some γ > 0. This was done in [JMR11] as follows: Jeffres, Mazzeo and
Rubinstein first used the Chern-Lu inequality and the Maximum Principle to
bound ∆′ϕβ uniformly, where ∆′ denotes the Laplacian with respect to the conic
Kähler-Einstein metric ω̃β = ωβ+

√
−1 ∂∂̄ ϕβ . This implies that ω̃β is uniformly

equivalent to ωβ and (6.1) becomes uniformly elliptic. Then they adapted known
techniques for Monge-Ampere equation to conic setting and derived a uniform
C2,γ-estimate for ϕβ .25 Now, by taking a subsequence if needed, ϕβ converge to
a C2,γ function ϕβ̄ which satisfies (6.1) with β = β̄. Then the known regularity
theory for conic complex Monge-Ampere equations (see [JMR11]) implies that
ϕβ̄ is a solution of (6.1) and consequently, β̄ ∈ E. This is a contradiction, so
our claim is verified.

Our first proof is to use the CM-stability. For simplicity, we first assume that
there are no nonzero holomorphic fields on M. Let us recall the CM-stability
(cf. [Ti97]). It can be defined in terms of Mabuchi’s K-energy:

Mω0(ϕ) = − 1

V

∫ 1

0

∫
M

ϕ (Ric(ωtϕ)− µωtϕ) ∧ ωn−1
tϕ ∧ dt. (6.2)

Given an embedding M ⊂ CPN by K−`M , we have an induced function on
G = SL(N + 1,C) which acts on CPN :

F(σ) = Mω0
(ψσ), (6.3)

where ψσ is defined by

1

`
σ∗ωFS = ω0 +

√
−1 ∂∂̄ψσ. (6.4)

24In fact, one can prove this continuity and smoothness directly by using the Inverse Func-
tion Theorem as one argued for the openness of E.

25In [JMR11], they used the Krylov-Evans method in a conic setting for deriving C2,γ -
estimate. However, more arguments are needed in order for them to adapt the Krylov-Evans
method to the conic case. In February 14 of 2014, they added an appendix which contains
a proof of the required C2,γ -estimate by using the method from my PKU Master degree
thesis. In early 2013, Chen-Donaldson-Sun gave a C2,γ -estimate for the special case of conic
Kähler-Einstein metrics.
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Note that F(σ) is well-defined since ψσ is unique modulo addition of constants.
Similarly, we can define J on G by

J(σ) = Jω0(ψσ). (6.5)

Definition 6.1. We call M CM-stable with respect to K−`M if F is proper, i.e.,
for any sequence σi ∈ G,

F(σi)→∞ whenever Jω0
(ψσi)→∞. (6.6)

We call M CM-semistable with respect to K−`M if F is bounded from below.
We say M CM-stable (resp. CM-semistable) if it is CM-stable (resp. CM-
semistable) with respect to K−` for all sufficiently large `.

Remark 6.2. In [Ti97], the CM-stability is defined in terms of the orbit of a
lifting of M in certain determinant line bundle, referred as the CM-polarization.
It is proved there that such an algebraic formulation is equivalent to the one in
Definition 6.1 (cf. [Ti97], Theorem 8.10).

The following is a conic version of what I knew for the Aubin’s continuity
method (cf. [Ti10]).

Theorem 6.3. If M is a Fano manifold which is CM-stable, then M admits a
Kähler-Einstein metric.

Proof. By the above discussions, if M does not admit any Kähler-Einstein met-
ric, then there is a sequence βi with limβi = β̄ ≤ 1 such that the C0-norms
of ϕi = ϕβi diverge to ∞. By the partial C0-estimate we established in last
section, we can have an embedding M ⊂ CPN through a basis of H0(M,K−`M )
for some ` > 0 and σi ∈ G such that

ψi = ψσi , ||ψi − ϕi||C0 ≤ C. (6.7)

Note that C always denotes a uniform constant. We claim:

Mω0(ϕi) ≥ F(σi) − C. (6.8)

Let us prove this claim. It was shown in [Ti00] (also [LS14], Proposition 3.5)
that

Mω0
(ϕ) =

1

V

∫
M

log

(
ωnϕ
ωn0

)
ωnϕ + (Iω0

(ϕ)− Jω0
(ϕ)) +

1

V

∫
M

h0 (ωn0 − ωnϕ),

where h0 is defined at the beginning of Section 2 and

Iω0
(ϕ) =

1

V

∫
M

ϕ (ωn0 − ωnϕ).

It follows from the above and (6.7) that Mω0
(ϕi) is bounded from below by

Mω0(ψi) +
1

V

∫
M

log

(
ωnψi
ωn0

)
(ωnϕi − ω

n
ψi) − C

≥ F(σi) +
1

V

∫
M

(ϕi − ψi) (Ric(ω0)− Ric(ωψi)) ∧
n−1∑
a=1

ωaϕi ∧ ω
n−a
ψi

− C
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Then (6.8) follows from this and the fact that Ric(ωψi) is bounded from above.
Next we recall the twisted K-energy:

Mω0,µ(ϕ) = Mω0
(ϕ) + (1−µ)(Iω0

(ϕ)−Jω0
(ϕ)) +

1− β
V

∫
M

log ||S||20 (ωnϕ−ωn0 ).

Claim: Mω0,µi(ϕi) are uniformly bounded from above. This follows from a
known relation between Mω0,µ and Fω0,µ (see [LS14], Proposition 2.10, (2))
which generalizes a formula of Ding and myself:

Mω0,µi(ϕi) = µi Fω0,µi(ϕi) +
1

V

∫
M

(h0 − (1− βi) log ||S||20 + aβi)ω
n
0 ,

where µi = 1− (1− βi)λ and aβi is determined in (2.1). Here we used the fact
that ωϕi is a conic Kähler-Einstein with cone angle 2πβi. Using Lemma 2.4
with t = µi and letting δ → 0, we get

Mω0,µi(ϕi) ≤ C. (6.9)

Since M is CM-stable with respect to K−`M , it follows from (6.8) and (6.9) that
ψi, and consequently, ϕi, are uniformly bounded. This is a contradiction, so
our theorem is proved.

Next we introduce the K-stability. I will use the original one from [Ti97].
First we recall the definition of the Futaki invariant [Fu83]: Let M0 be any
Fano manifold and ω be a Kähler metric with c1(M) as its Kähler class, for any
holomorphic vector field X on M0, Futaki defined

fM0(X) = −n
∫
M

θX (Ric(ω)− ω) ∧ ωn−1, (6.10)

where iXω =
√
−1 ∂̄θX . Futaki proved in [Fu83] that fM (X) is independent

of the choice of ω, so it is a holomorphic invariant. In [DT92], the Futaki
invariant was extended to normal Fano varieties: Assume M 7→ CPN through
a basis of H0(M,K−`M ) for a sufficiently large `. For any algebraic subgroup
G0 = {σ(t)}t∈C∗ of G = SL(N + 1,C), there is a unique limiting cycle

M0 = lim
t→0

σ(t)(M) ⊂ CPN .

Let X be the holomorphic vector field whose real part generates the action by
σ(e−s). By [DT92], if M0 is normal, we can still use (6.10) to define a generalized
Futaki invariant fM0

(X). In fact, we only need that M0 is irreducible in [DT92].
In [Do02], Donaldson gave a formulation of the Futaki invariant fM0

(X) which
works for any variety M0. One can also define fM0(X) in terms of asymptotic
expansion of the K-energy: In his thesis [Li12] (also see [PT06]), Chi Li observed
that for any algebraic subgroup G0 = {σ(t)}t∈C∗ of G,

F(σ(t)) = − (fM0(X) − a(G0)) log |t|2 + O(1) as t→ 0,
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where a(G0) ∈ Q is non-negative and the equality holds if and only if M0 has no
non-reduced components. He also pointed out that (6.11) can be actually de-
rived by using the arguments from [Ti97]. The same arguments can be also used
to identify fM0

(X) − a(G0) with a Futaki invariant fM̃0
(X̃) of a G0-equivariant

semi-stable reduction q : X̃ 7→ X , where X = {(x, t) |x ∈ σ(t)(M) or M0},
M̃0 = q−1(M0) and X̃ is the field generating the action of G0 on X̃ . The
existence of X̃ is established in [LX14].26 In particular, we have

F(σ(t)) = −Re(fM̃0
(X̃)) log |t|2 + O(1) as t→ 0. (6.11)

One can also prove (6.11) by using the equivariant Riemann-Roch Theorem.

Definition 6.4. We say that M is K-stable with respect to K−`M if

Re(fM0
(X)) ≥ 0

for any G0 ⊂ SL(N + 1,C) with a normal M0 and the equality holds if and only
if M0 is biholomorphic to M . We say that M is K-stable if it is K-stable for all
sufficiently large `.

This was the one given in [Ti97]. There are other formulations of the K-
stability by S. Donaldson in [Do02] and S. Paul in [Pa12]. Donaldson’s formula-
tion of the K-stability does not require that M0 is normal. However, by [LX14],
Donaldson’s formulation is equivalent to Definition 6.4.27

It was proved in [Ti97] that if M is a Fano manifold without non-trivial
holomorphic vector fields and admits a Kähler-Einstein metric, then M is K-
stable.

To prove Theorem 1.1, we need to show that if M is a K-stable Fano man-
ifold, then it is CM-stable. In view of (6.11), the K-stability means that F
is proper along any one-parameter algebraic subgroup of G. Hence, by The-
orem 6.3, our problem is whether or not the properness of F on G follows
from the properness of F along any one-parameter algebraic subgroup of G, or
equivalently, the problem is whether or not the CM-stability is the same as the
K-stability. This is an algebraic problem in nature. We will prove it by using
the approach due to S. Paul 28 and results in [Pa12].

As in classical Geometric Invariant Theory, we deduce the CM-stability from
the K-stability in two steps. The following lemma provides the first step.29

Lemma 6.5. Let T be any maximal algebraic torus of G. If the restriction F|T
is proper in the sense of (6.6), then M is CM-stable.

26In fact, we only need X̃ has no multiple components in its central fiber, then one can
simply take it as the normalization of a base change of X .

27Paul’s definition also turns out to be the equivalent.
28I learned this approach from S. Paul in the late summer of 2012. In [Pa12] and [Pa13],

Paul gave detailed arguments for his approach. Here I used some different arguments which
I have been familiar for long.

29This step was done more algebraically and differently in [Pa12] or [Pa13].
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Proof. We prove it by contradiction. Suppose that we have a sequence σi ∈ G
such that F(σi) stay bounded while J(σi) diverge to ∞.

Recall the Cartan decomposition: G = K · T · K, where K = U(N + 1).
Write σi = k′itiki for ki, k

′
i ∈ K and ti ∈ T. Then we have that F(tiki) = F(σi)

stay bounded while J(tiki) = J(σi) diverge to ∞.
On the other hand, since each ki is represented by unitary matrix, we can

show easily
|ψti − ψtiki | ≤ log(N + 1).

Using the fact that both Ric(ωψti ) and Ric(ωψtiki ) are bounded from above and
arguing as in the proof of Theorem 6.3, we can have

|F(ti) − F(tiki)| ≤ C.

It follows that F(ti) stay bounded while J(ti) diverge to ∞. We get a contra-
diction.

Theorem 6.6. If a Fano manifold M is K-stable, then it is CM-stable.30

Proof. We will fix an embedding M ⊂ CPN of degree d by using a basis of
H0(M,K−`M ). By Lemma 6.5, we only need to prove that F is proper on a
maximal algebraic torus T ⊂ G = SL(N + 1,C).

First we recall the Chow coordinate and Hyperdiscriminant of M ([Pa12]):
Let G(N−n−1, N) the Grassmannian of all (N−n−1)-dimensional subspaces
in CPN . We define

ZM = {P ∈ G(N − n− 1, N) |P ∩M 6= ∅ }. (6.12)

Then ZM is an irreducible divisor of G(N−n−1, N) and determines a non-zero
homogeneous polynomial RM ∈ C[M(n+1)×(N+1)], unique modulo scaling, of
degree (n + 1)d, where Mk×l denotes the space of all k × l matrices. We call
RM the Chow coordinate or the M -resultant of M .

Next consider the Segre embedding:

M × CPn−1 ⊂ CPN × CPn−1 7→ P(M∨n×(N+1)),

where M∨k×l denotes its dual space of Mk×l. Then we define

YM = {H ⊂ P(M∨n×(N+1)) |Tp(M × CPn−1) ⊂ H for some p }. (6.13)

Then YM is a divisor in P(M∨n×(N+1)) of degree d̄ = n2d, and consequently,

determines a homogeneous polynomial ∆M in C[Mn×(N+1)], unique modulo
scaling, of degree d̄. We call ∆M the hyperdiscriminant of M .

Set

r = (n+ 1) dd̄, V = Cr[M(n+1)×(N+1)], W = Cr[Mn×(N+1)],

30This theorem is actually true for any polarized manifold and due to S. Paul. Its proof
was also given in detail in [Pa13] and [Ti13].
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where Cr[Ck] denotes the space of homogeneous polynomials of degree r on Ck.
Following [Pa12], we associate M with the pair (R(M),∆(M)) in V×W, where

R(M) = Rd̄M and ∆(M) = ∆
(n+1)d
M .

Fix norms on V and W, noth denoted by || · || for simplicity, we set

pv,w = log ||w|| − log ||v||. (6.14)

The following was first observed by S. Paul.

Lemma 6.7. Let (σ,B) 7→ σ(B) : G×gl 7→ gl be the natural representation by
left multiplication, where gl denotes the space of all (N + 1)× (N + 1) matrices.
Then we have

|J(σ) − pR(M),Ir (σ) | ≤ C, (6.15)

where I is the identity in gl and Ir ∈ U = gl⊗r.

Proof. It is known (cf. [Pa04])

(n+ 1) J(σ) = (n+ 1)

∫
M

ψσ ω
n
0 − log ||σ(RM )||2.

This is equivalent to

(n+ 1) d̄J(σ) = r

∫
M

ψσ
ωn0
d
− log ||σ(R(M))||2. (6.16)

If we write σ ∈ SL(N+1,C) as a (N+1)×(N+1)-matrix (ϑij) with determinant
one, then the Hilbert-Schmidt norm of σ is given by

||σ||2 =

N∑
i,j=0

|ϑ|2.

Clearly, we have

ψσ = log

 N∑
i=0

||
N∑
j=0

ϑijSj ||2
 ,

where {Sj}0≤j≤N is an orthonormal basis. By direct computations, we can
easily show ∣∣∣∣∣∣ log ||σ||2 −

∫
M

log

 N∑
i=0

||
N∑
j=0

ϑijSj ||2
 ωn0

d

∣∣∣∣∣∣ ≤ C.

Combining the above two with (6.16), we get (6.15).

Lemma 6.8. Let V, W and U be as above. If F is not proper on T (resp.
G0), then the orbit of [R(M),∆(M)] × [R(M), Ir] under T (resp. G0) has
a limit point in (P (V) ×W) × ({0} × P (U)) which is an open subvariety of
P (V ⊕W)× P (V ⊕U), where G0 is an one-parameter algebraic subgroup.
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Proof. First we note that (P (V)×W)× ({0}×P (U)) is T-invariant. It follows
from [Pa12] that for all σ ∈ G, we have

|F(σ) − an pR(M),∆(M)(σ) | ≤ C, (6.17)

where an > 0 and C are uniform constants.
By Lemma 6.7 and (6.17), we see that if F is not proper on T (resp. G0),

then there are σi ∈ T (resp. G0) such that pR(M),∆(M)(σi) stay bounded while
pR(M),Ir (σi) goes to ∞. In [Pa12], S. Paul showed

pR(M),∆(M)(σ) = log tan2 d(σ([R(M),∆(M)]), σ([R(M), 0]))

and
pR(M),Ir (σ) = log tan2 d(σ([R(M), Ir]), σ([R(M), 0])),

where d(·, ·) denotes the distance in P (V⊕W) with respect to the Fubini-Study
metric. Therefore, the limits of σi([R(M), Ir]) lie in {0}×P (U) while limits of
σi([R(M),∆(M)]) stay in P (V)×W. The lemma is proved.

Now we deduce Theorem 6.6 from Lemma 6.8. If M is not CM-stable, then
there are v ∈ V, w ∈ W, u ∈ U such that u, v 6= 0 and ȳ = [v, w] × [0, u] is
in the closure of the T-orbit of x = [R(M),∆(M)] × [R(M), Ir]. Choose T-
invariant hyperplanes V0 ⊂ V and U0 ⊂ U, which can be naturally identified
with P (V)\P (V0) and P (U)\P (U0), such that x ∈ E = V0 ×W ×V ×U0

and y ∈ E0 = V0 ×W × {0} ×U0. Clearly, the orbit T · y lies in the closed
subspace E0 of E. By taking an orbit in the closure of T ·y if necessary, we may
assume that T · y is closed in E0. Then, by a well-known result of Richardson
(cf. [Pa12] and also [Ti13]), there is an one-parameter algebraic subgroup G0

such that the closure of G0 · x contains a point in E0 which is a subset of
(P (V)×W)× ({0}×P (U)). By Lemma 6.8, this contradicts to the K-stability
of M . Thus, the proof of Theorem 6.6 is completed.

Theorem 1.1 follows from Theorem 6.3 and Theorem 6.6.

If M has non-zero holomorphic vector fields, instead of proving (6.6), we
prove that for any sequence σi ∈ G,

F(σi)→∞ whenever inf
τ∈Aut0(M)

J(σiτ)→∞, (6.18)

where Aut0(M) denotes the identity component of the automorphism group of
M . One can modify the above arguments to prove (6.18) when M is K-stable.
So we can still prove Theorem 1.1 in general cases by using the CM-stability.

There is another way of completing the proof of Theorem 1.1.31 If M does
not admit any Kähler-Einstein metric, we have a sequence βi ∈ E which con-
verge to β̄ /∈ E which is not in E. Then, by taking a subsequence if necessary,

31This proof was outlined in the first version of this paper and is actually simpler.

43



we may assume that (M,D,ωi) converge to (M∞, D∞, ω∞). By using the par-
tial C0-estimate established in last section, we may further have that (1) M
is embedded in CPN through an orthonormal basis of H0(M,K−`M ) given by
ωi; (2) M∞ ⊂ CPN is a normal subvariety with a divisor D∞; (3) There are
σi ∈ G = SL(N + 1,C) such that (σi(M), σi(D)) converge to (M∞, D∞). It
follows that the stabilizer G∞ of (M∞, D∞) in G contains a non-trivial holo-
morphic subgroup.

Lemma 6.9. The Lie algebra η∞ of G∞ is reductive.

Proof. The proof has two steps: In the first step, we prove that any holomorphic
field in η∞ is a complexification of a Killing field on M∞. 32 In the second and
easy step, we show that any Killing field can be extended to be the imaginary
part of a holomorphic field on the ambient projective space.

First we state a technical result which I knew for long. As usual, S̄ denotes
the singular set of M∞. Since S̄ ∪D∞ ⊂ M∞ ⊂ CPN is a subvariety, there is
a holomorphic section τ̃ ∈ H0(CPN ,O(k)) which vanishes on S̄ ∪D∞ for some
k. Note that τ̃ is actually given by a homogeneous polynomial of degree k on

CN+1. Also we have K−`
′

M∞
= O(k)|M∞ for `′ = k`, so we get a holomorphic

section τ∞ in H0(M∞,K
−`′
M∞

) whose zero set contains S̄ ∪ D∞, in particular,

M∞\τ−1
∞ (0) is contained in the regular part of (M∞, ω∞). Choose a cut-off

function η̃ : R 7→ R satisfying: η̃(t) = 1 for t ≥ 2, η̃(t) = 0 for t ≤ 1, |η̃′(t)| ≤ 1
and |η̃′′(t)| ≤ 4. For any ε > 0, we define

γε(x) = η̃(ε log(− log ||τ∞||20(x)),

where || · ||0 denotes the Hermitian norm with curvature ωFS restricted to M∞.

Lemma 6.10. Let ψ1, · · · , ψk (k ≤ n − 1) be bounded functions which are
smooth and satisfy: ωi = 1

` ωFS +
√
−1 ∂∂̄ ψi ≥ 0 outside S̄ ∪D∞. Then

lim
ε→0

∫
M∞

√
−1 ∂γε ∧ ∂̄γε ∧ ω1 ∧ · · · ∧ ωk ∧

(
1

`
ωFS

)n−1−k

= 0. (6.19)

This lemma should be also known to experts in studying the theory on
plurisubharmonic functions since its proof uses the standard arguments in study-
ing (1,1)-currents with locally bounded potentials. For the readers’ convenience,
we will give a proof at the end of this section.

Let X be a holomorphic vector field on CPN which is tangent to M∞. We
will show that there is a bounded function θ∞ such that iXω∞ =

√
−1 ∂̄θ∞ on

M∞\S̄∪D∞. Let φt be an one-parameter subgroup of automorphisms generated
by Y which is either the real or imaginary part of X, then we have

φ∗tω∞ =
1

`
ωFS +

√
−1 ∂∂̄ ψt.

32In [BB12], based on arguments from [Bo11], Berman-Boucksom-Essydieux-Guedj-Zeriahi
proved a strong uniqueness theorem: Kähler-Einstein metrics on (possibly) singular Fano vari-
eties are unique modulo an automorphism group obtained by complexifying an isometry group.
The step one, and consequently, Lemma 6.9, follows directly from this uniqueness result. This
observation was first pointed out in writing by Chen-Donaldson-Sun [CDS15, I, II, III].
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Since ω∞ is a weakly Kähler-Einstein metric, we may choose ψt such that

φ∗tω
n
∞ = (ω∞ +

√
−1 ∂∂̄ ξt)

n = e−µ̄ ξt ωn∞ on M∞\S̄ ∪D∞, (6.20)

where ξt = ψt − ψ0 and µ̄ = 1 − (1 − β̄)λ. Each ψt, or equivalently ξt, is a
bounded, actually continuous, function. The continuity follows from the partial
C0-estimate. To see this, we note

ω∞ =
1

`
ωFS +

√
−1∂∂̄ψ0.

Then we have

φ∗tω∞ =
1

`
φ∗tωFS +

√
−1∂∂̄ψ0 ◦ φt =

1

`
ωFS +

√
−1∂∂̄ψt.

It implies
ξt = ψt − ψ0 = ψ0 ◦ φt − ψ0 + ζt,

where ζt is a smooth function on CPN and satisfies

φ∗tωFS = ωFS + `
√
−1 ∂∂̄ζt, ζ0 = 0.

The partial C0-estimate implies that a subsequence of {log ρi,`} converges to
` ψ0 + c for some constant c as (M,ωi) converge to (M∞, ω∞), where ρi,` are
defined in (5.3) as the sum of square norms of sections in an orthonormal basis
of H0(M,K−`M ) with respect to ωi, e.g., the one in above (1). By the gradient
estimate in Corollary 4.2, sections in such a basis are uniformly continuous, so
ρi,` are uniformly continuous for any fixed `. Since ρi,` are uniformly bounded
by a positive constant, it follows that ψ0 is continuous, so does each ξt. We also
see that |ξt| ≤ 1/2 if t is sufficiently small.

It follows from (6.20) that

−
√
−1 ∂∂̄ ξt ∧

(
n−1∑
i=0

ωi∞ ∧ (φ∗tω∞)n−i−1

)
= (1− e−µ̄ ξt)ωn∞. (6.21)

We multiply this by γεξt and integrate by parts, then by using Lemma 6.10 as
ε goes to 0, we get∫

M∞

√
−1 ∂ξt ∧ ∂̄ξt

(
n−1∑
i=0

ωi∞ ∧ (φ∗tω∞)n−i−1

)
=

∫
M∞

ξt (1− e−µ̄ ξt)ωn∞.

It follows easily

1

n

∫
M∞

|∇ξt|2 ωn∞ ≤ 2 µ̄

∫
M∞

|ξt|2 ωn∞ (6.22)

whenever we choose t so small that |ξt| ≤ 1/2. Set

γ̄δ(x) = 1 − η̃(δ−1 ||τ∞||0(x)).
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Then γ̄δ(x) is equal to 1 when ||τ∞||(x) ≤ δ and supports in the subset Eδ where
||τ∞||0 is not greater than 2δ. Then we have∫

M∞

|∇(γ̄δξt)|2 ωn∞ ≤ 3n

∫
M∞

|γ̄δξt|2 ωn∞ + t2 Cδ, (6.23)

where Cδ denotes a constant which depends only on δ. Let me explain why this
is true: Recall

ξt = ψt − ψ0 = ψ0 ◦ φt − ψ0 + ζt.

Since ζt is defined on CPN by φ∗tωFS = ωFS + `
√
−1 ∂∂̄ζt and ζ0 = 0, we have

|ζt| ≤ sup |ζ̇t| t ≤ Cζ t for some constant Cζ independent of t, where ζ̇t denotes
the derivative of ζt on t. On the other hand, since ψ0 is smooth outside S̄ ∪D∞,
we have |dψ0| ≤ C ′δ outside Eδ/4 for some C ′δ which may depend on δ. Using
the fact that φ0 is the identity map, for t small, we have

|ξt| ≤ |ψ0 ◦ φt − ψ0|+ |ζt| ≤ (C ′δ sup
M∞\Eδ/4

|φ̇t|+ Cζ) t on M∞\Eδ/2,

where φ̇t denotes the t-derivative of φt. Hence, we have∫
M∞\Eδ/2

|ξt|2 ωn∞ ≤ C ′′δ t
2. (6.24)

Using the Cauchy-Schwartz inequality and the fact γ̄δ = 1 on Eδ/2, we get∫
M∞

|∇(γ̄δξt)|2 ωn∞ ≤
3

2

∫
M∞

|∇ξt|2 ωn∞ + 10

∫
M∞

|∇γ̄δ|2 |ξt|2 ωn∞.

Then (6.23) follows from this, (6.22) and (6.24).
For any open E ⊂M∞ with nonempty boundary ∂E ⊂M∞\S, we define

λ1(E) = inf

{ ∫
E
|∇v|2 ωn∞∫

E
|v|2 ωn∞

∣∣ 0 6= v ∈ C1(E\S) ∩ L∞(E), v|∂E = 0

}
.

We call it the first eigenvalue of (E,ω∞) with vanishing boundary condition.

Claim: λ1(Eδ) ≥ 4n if δ is sufficiently small.

Proof. Our claim is a consequence of Proposition 6 in [Li80] and Theorem 11 in
[Cr80] adapted to our situation.

First we claim that V ol(Eδ)→ 0 as δ → 0, where V ol(Eδ) is the Hausdorff
measure of Eδ associated to the metric structure of (M∞, ω∞). Since S has
codimension at least 2 (cf. Theorem 3.1), we have

V ol(Eδ) =

∫
Eδ\S

ωn∞.

Moreover, for any ε̄ > 0, we can choose a small neighborhood Uε̄ of S such that
V ol(Uε̄) ≤ ε̄. Note that ω∞ is smooth in an open set containing M∞\Uε̄, so if
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δ is sufficiently small, we have V ol(Eδ\Uε̄) ≤ ε̄. It follows V ol(Eδ) ≤ 2 ε̄, so
our claim is proved.

Secondly, we note that it suffices to take v with support away from S in the
definition of λ1(Eδ). Given any v in defining λ1(Eδ) with

∫
Eδ
|∇v|2ωn∞ <∞, let

γε be the cut-off functions in Lemma 6.10, then γε v have supports away from
S and satisfy∫
Eδ

|∇(γε v)|2 ωn∞ =

∫
Eδ

(
γ2
ε |∇v|2 + 2 < v∇γε, γε∇ v > + v2 |∇γε|2

)
ωn∞.

Since v is bounded, we have

lim
ε→0

∣∣∣∣∫
Eδ

v2 |∇γε|2 ωn∞
∣∣∣∣ = 0.

The Cauchy-Schwartz inequality gives∣∣∣∣∫
Eδ

< v∇γε, γε∇ v > ωn∞

∣∣∣∣ ≤ (∫
Eδ

v2 |∇γε|2 ωn∞
) 1

2
(∫

Eδ

γ2
ε |∇v|2 ωn∞

) 1
2

.

Therefore, we have

lim
ε→0

∫
Eδ

|∇(γε v)|2 ωn∞ =

∫
Eδ

|∇v|2 ωn∞.

So we may assume that v supports away from S in estimating λ1(Eδ) from
below.

By applying Theorem 2.6 to each (M,ωi), we can find smooth Kähler met-
rics ω̃i on M with Ricci curvature Ric(ω̃i) ≥ µi ω̃i, where limµi = µ̄, such
that (M, ω̃i) converge to (M∞, ω∞) in the Cheeger-Gromov topology. Choose
smooth domains Eiδ ⊂ M such that they converge to Eδ as (M, ω̃i) converge
to (M∞, ω∞). For any v ∈ C1(M∞\S) with support away from S, we can find
diffeomorphisms φi : M∞\U 7→ M\D, where U is a small neighborhood of S,
such that v = 0 near U ⊂ Eδ and φ∗i ω̃i converge to ω∞ on M∞\Ū in the smooth
topology. For each i, put vi = v ◦φ−1

i , then by defining vi = 0 on Eiδ\φi(U), we
get a sequence of smooth functions vi on Eiδ converging to v. It follows

λ1(Eδ) ≥ inf lim
i→∞

λ1(Eiδ),

where λ1(Eiδ) is the first eigenvalue of (Eiδ, ω̃i) with zero boundary condition.
By Proposition 6 in [Li80], we have

λ1(Eiδ) ≥
(
c(n)Cs,i
V oli(Eiδ)

)1/n

,

where c(n) is a constant depending only on n, Cs,i is the Sobolev constant of ω̃i
for functions with compact support in Eiδ and V oli(E

i
δ) denotes the volume of

Eiδ with respect to the metric ω̃i. Since Cs,i is equivalent to the isoperimetric
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constant of (Eiδ, ω̃i), Theorem 11 in [Cr80] yields that Cs,i can be uniformly
bounded from below by lower bound µi of Ricci curvature, diameter and the
volume of (M, ω̃i). On the other hand, it follows from the result on volume con-
vergence in the Gromov-Hausdorff topology in [CC97] that V oli(E

i
δ) converge

to V ol(Eδ) as i goes to∞, particularly, V oli(E
i
δ) is small if δ is sufficiently small

and i is sufficiently large. Thus λ1(Eδ) ≥ 4n if δ is taken sufficiently small, so
our claim is proved.

There is an alternative way of proving our claim without using those ω̃i. Let
ε > 0 be much smaller than δ, it follows from the second observation above that

λ1(Eδ) ≥ inf lim
ε→0

λ1(Eδ\Eε).

Then, by applying Proposition 6 in [Li80] and Theorem 11 in [Cr80] to Eδ\Eε
and arguing as we did for Eiδ above, we get λ1(Eδ\Eε) ≥ 4n if δ is sufficiently
small. Thus we give another proof of our claim.

It follows from (6.23) and the above claim

n

∫
M∞

|γ̄δξt|2 ωn∞ ≤ Cδ t
2.

Since γ̄δ = 1 on Eδ/2, we deduce from (6.24)∫
M∞

|(1− γ̄δ) ξt|2 ωn∞ ≤
∫
M∞\Eδ/2

|ξt|2 ωn∞ ≤ C ′′δ t
2.

It follows from the Cauchy-Schwartz inequality and the above two inequalities∫
M∞

|ξt|2 ωn∞ ≤ 2

(∫
M∞

|γ̄δξt|2 ωn∞ +

∫
M∞

|(1− γ̄δ)ξt|2 ωn∞
)
≤ C̄δ t

2.

Combining this with (6.22) and dividing by t2, we get∫
M∞

(
|t−1∇ξt|2 + |t−1ξt|2

)
ωn∞ ≤ 2Cδ. (6.25)

First we assume that Y is the real part of X. Since ξt = ψ0 ◦ φt − ψ0 + ζt
and ψ0 is smooth outside S̄ ∪D∞, we see that t−1ξt converge pointwisely to u
on M∞\S̄ ∪D∞ as t→ 0. Letting t go to 0, we deduce from (6.25)∫

M∞

|u|2 ωn∞ ≤ C. (6.26)

Moreover, by differentiating (6.20) on t, we have∫
M∞

uωn∞ = 0.

48



For any q ≥ 2, we multiply (6.21) by γεξt|ξt|q−2 and integrate by parts, then
by letting ε go to 0, we get∫

M∞

|∇|t−1ξt|
q
2 |2 ωn∞ ≤

12n µ̄ q2

q − 1

∫
M∞

|t−1ξt|q ωn∞. (6.27)

applying the Sobolev inequality to its LHS, we get(∫
M∞

|t−1ξt|
qn
n−1 ωn∞

)n−1
n

≤ C q

∫
M∞

|t−1ξt|q ωn∞,

where C is a constant depending only on the Sobolev constant, n and µ̄. It
is shown in (6.25) that t−1ξt has uniformly bounded L2-norm. Therefore, by
starting with q0 = 2 and iterating with qi+1 = qin

n−1 for i ≥ 0, we get that for
any q ≥ 2, there is a uniform constant Cq satisfying:∫

M∞

|t−1ξt|q ωn∞ ≤ Cq.

This implies that t−1ξt converge to u in any Lq-norm. To see this, we fix q ≥ 2.
It follows from the Hölder inequality that for any δ > 0,∫
Eδ

|t−1ξt|q ωn∞ ≤ V ol(Eδ)
1
n

(∫
M∞

|t−1ξt|
qn
n−1 ωn∞

)n−1
n

≤ V ol(Eδ)
1
n (C qn

n−1
)
n−1
n .

So for any ε > 0, we can choose δ sufficiently small such that∫
Eδ

|t−1ξt|q ωn∞ ≤
ε

3
. (6.28)

Since t−1ξt converge to u outside D∞, for t sufficiently small, we have∫
M\Eδ

|t−1ξt − u|q ωn∞ ≤
ε

3
.

By letting t go to 0, we deduce from (6.28)∫
Eδ

|u|q ωn∞ ≤
ε

3
.

Putting the above three estimates together and letting ε go to 0, we see that
t−1ξt converge to u in the Lq-norm.

By taking t go to 0, we can now deduce from (6.27)∫
M∞

|∇|u|
q
2 |2 ωn∞ ≤

12n µ̄ q2

q − 1

∫
M∞

|u|q ωn∞.

Then, by using (6.26) and the standard Moser iteration, we can easily prove
that u is bounded.
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Each ψt is smooth outside S̄ ∪D∞ and satisfies:

1

`
ωFS +

√
−1 ∂∂̄ψt = φ∗tω∞ =

1

`
φ∗tωFS +

√
−1 ∂∂̄ φ∗tψ0.

It follows that ψt = φ∗tψ0 + ζt, where φ∗tωFS = ωFS + `
√
−1 ∂∂̄ ζt. Note that ζt

is a smooth function on the whole CPN as well as in t. Thus, we have

u = Y (ψ0) + θu, where θu =
∂ζ

∂t

∣∣
t=0

.

Similarly, by taking Y to be the imaginary part of X, we can get a bounded
function v = Y (ψ0) + θv.

Set θ∞ = u +
√
−1 v and θ = θu +

√
−1 θv, then θ∞ = X(ψ0) + θ is a

bounded function on M∞ and iXωFS = `
√
−1 ∂̄ θ holds on CPN . Clearly, we

have iXω∞ =
√
−1 ∂̄ θ∞. Moreover, we have∫
M∞

|∇θ∞|2 ωn∞ < ∞ and

∫
M∞

θ∞ ωn∞ = 0. (6.29)

Next we show that θ∞ satisfies an eigenfunction equation in a weak sense.
Let φt be as above and ζ be any function on M∞ which can be extended to be
a smooth function in an neighborhood of M∞ in CPN . It follows from (6.20)
and change of variables that∫

M∞

ζ ◦ φ−1
t ωn∞ =

∫
M∞

ζ e−µ̄ ξt ωn∞.

This is equivalent to∫
M∞

(∫ t

0

Y (ζ) ◦ φs ds
)
ωn∞ = µ̄

∫
M∞

ζ

(∫ t

0

ξ̇ ds ∧ φ∗sωn∞
)
. (6.30)

where ξ̇ denotes the t-derivative of ξt.
Dividing (6.30) by t and taking Y to be the real or imaginary part of X, as

t tends to 0, we deduce∫
M∞

X(ζ)ωn∞ = µ̄

∫
M∞

ζ θ∞ ωn∞.

That is, in the weak sense,

−∆∞θ∞ = µ̄ θ∞ on M∞. (6.31)

On the other hand, by our assumption on β̄ and Theorem 2.6 in Section 2,
there are smooth Kähler manifolds (M, ω̃i) with Ric(ω̃i) ≥ µi ω̃i and converging
to (M∞, ω∞) in the Cheeger-Gromov topology, where limµi = µ̄.

Claim: Any bounded eigenfunction satisfying (6.31) is the limit of eigenfunc-
tions θi on M such that ∆iθi = −λi θi with limλi = µ̄, where ∆i denotes the
Laplacian of ω̃i.
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This is well-known if (M∞, ω∞) is smooth since the spectra depend continuously
on smooth metrics on a manifold. Clearly, in view of Lemma 6.10, the arguments
for smooth metrics apply to our case. Identical arguments were also used in my
previous works. For the readers’ convenience, we include a proof here by using
Lemma 6.10 and standard arguments.

First we need to consider only real eigenfunctions since ∆i are real operators.
Secondly, since (M, ω̃i) has uniform Sobolev inequality and smooth away from
S, we have: For any {ui} with −∆i ui = µi ui and ||ui||L2 = 1, by taking a
subsequence if necessary, ui converge to a function u with −∆∞ u = µ̄ u and
||u||L2 = 1. Let Λ̃µ̄ be the set of all such u, then it is a subspace of Λµ̄ which

consists of all bounded eigenfunctions with eigenvalue µ̄. If Λ̃µ̄ 6= Λµ̄, then there
is a bounded u ∈ Λµ̄ such that∫

M∞

u2 ωn∞ = 1,

∫
M∞

uua ω
n
∞ = 0,

∫
M∞

|∇u|2 ωn∞ = µ̄,

where {ua}1≤a≤k is an orthonormal basis of Λ̃µ̄. Let γε be the cut-off function
in Lemma 6.10 Then γεu has its support away from the singular set S and

lim
ε→0

∫
M

|∇(γεu)|2 ωn∞ = µ̄ and lim
ε→0

∫
M

(γεu)2 ωn∞ = 1.

Recall that S is the singular set of ω∞. Define Tδ(S) as the set of points in CPN
whose distance from S is less than δ. Then there are δi → 0 and diffeomorphisms
φi : M∞\Tδi(S) 7→M such that φ∗iωi converge to ω∞ on M∞\S. It follows that
there are εi → 0 such that ui = (γεiu) ◦ φ−1

i extend smoothly to M and

lim
i→∞

∫
M∞

|∇ui|2 ω̃ni = µ̄ and lim
i→∞

∫
M∞

u2
i ω̃

n
i = 1.

For each a, there are eigenfuctions ua,i of ωi which converge to ua, then for each
i sufficiently large, ui, u1,i, · · · , uk,i generate a space Λi of dimension k+ 1 such
that

sup
v∈Λi\{0}

∫
M
|∇v|2 ω̃ni∫
M
v2 ω̃ni

≤ µ̄ + νi

for some νi → 0. It follows that there are eigenfunctions u0,i with eigenvalue
not bigger than µ̄+ νi such that it has L2-norm 1 and is orthogonal to ua,i for
a = 1, · · · , k. By using the Bochner technique, we have the eigenvalue for u0,i

is not less than µi. By taking a subsequence if necessary, we may assume that
u0,i converge to an eigenfunction u0 6= 0 in Λ̃µ̄ which is orthogonal to ua for
a = 1, · · · , k. A contradiction! Therefore, our claim is proved.

Let θ be a bounded function satisfying (6.31). By the above claim, it is
the limit of eigenfunctions θi on M such that ∆iθi = −λi θi with limλi = µ̄.
Applying the Bochner identity, we get∫

M

|∇0,1∂̄θi|2 ω̃ni ≤ (λi − µi)

∫
M

|∂θi|2 ω̃ni = λi(λi − µi),
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where ∇0,1 denotes the (0,1)-part of the covariant derivative of ω̃i. It follows
that∇0,1∂̄θ = 0, so ∂̄θ induces a holomorphic vector field Z outside the singular
part S of (M∞, ω∞). If θ is real, then the imaginary part Y of Z is a Killing
field. Since (6.31) is a real equation, we conclude that η∞ is the complexication
of a Lie algebra of Killing fields.

Finally, we want to extend Z to the ambient space CPN . This can be done
as follows: It suffices to extend Y . Fix a small ε > 0 such that Tε(S) is covered
by finitely many open subsets V1, · · · , Vk satisfying: (1) Vi is isomorphic to a
ball in CN and (2) For each i, there is a section σi in H0(M∞,K

−`
M∞

) such that

c ≤ ||σi||∞ ≤ c−1 on M∞ ∩ Vi for some c > 0 independent of i. We integrate Y
to get a family of biholomorphic maps φ(t) from a neighborhood of M∞\Tε(S)
into M∞\S, where |t| < δ for some δ = δ(ε) > 0. Note that φ(0) = I. Since Y
is a Killing field, wherever φ(t) is well-defined, it is an isometry of the induced
Hermitian metric H∞ on K−1

M∞
. Given any σ ∈ H0(M∞,K

−`
M∞

), φ(t)∗σ is a

bounded and holomorphic section of K−`M∞ over M∞\Tε(S). If E is any subspace

of CPN of complex dimension N −n+2 with (at most) finite intersections with
S, then ME = M∞∩E is a complex normal variety of complex dimension 2 and
ME ∩ Tε(S) is compact. For each i, fi = φ(t)∗σ/σi is a bounded holomorphic
function on (M∞\Tε(S))∩Vi, so by the Hartogs’ extension theorem, fi extends
to be a bounded holomorphic function on ME∩Vi. It follows that φ(t)∗σ extends
to a holomorphic section of K−`M∞ over ME\S. Since E is arbitrary, we can easily
deduce that φ(t)∗σ extends to M∞\S. Thus, φ(t) lifts to an isomorphism of
H0(M∞,K

−`
M∞

), or equivalently, φ(t) is the restriction of an automorphism in
G = SL(N + 1,C). Differentiating φ(t) on t, we see that Y , consequently Z,
extends to a holomorphic vector field on CPN .33

Hence, η∞ is reductive, and consequently, this lemma is proved.

By Lemma 6.9 and a known result in algebraic geometry (cf. [Do10]), we can
find a C∗-subgroup G0 ⊂ G which degenerates (M,D) to (M∞, D∞). Then we
will get a contradiction to the K-stability as follows: Let X be the generating
field of G0. As observed in [Do11] and [Li15]), adapting arguments from [Fu83],
we can define the Futaki invariant fM∞,(1−β)D∞ , also referred as the log-Futaki
invariant, for conic Kähler metrics on M∞ with cone angle 2πβ along D∞
(β̄ ∈ (0, 1)). Furthermore, if there is a conic Kähler-Einstein metric with angle
2πβ along D∞, then fM∞,(1−β̄)D∞ vanishes. Note that though ω∞ may not be
smooth along D∞ in our case, we can still prove the vanishing of fM∞,(1−β̄)D∞
by adapting the arguments from [DT92]. It follows directly from the definition
of the twisted Mabuchi energy (see [LS14]):

(β̄ − β̄1) Mω0
(ψτ ) = (1− β̄1) Mω0,µ̄(ψτ ) − (1− β̄) Mω0,µ̄1

(ψτ ),

where 1− λ−1 < β̄1 ≤ β̄ and ψτ is given in (6.4) for τ ∈ G0. Taking derivative

33If β∞ < 1, D∞, being the singular set of ω∞, must be preserved by the isometries
generated by Y . Hence, Z is tangent to D∞.
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in τ and letting τ go to ∞, we get

(β̄ − β̄1) fM∞(X) = − (1− β̄) fM∞,(1−β̄1)D∞(X).

There is a corresponding conic Kähler-Einstein metric with angle 2πβ̄1 if β̄1 is
sufficiently close to 1−λ−1 (see [LS14]). So Mω0,µ̄1

is proper and consequently,

Re(fM∞,(1−β1)D∞(X)) ≥ 0.

Hence, we get
Re(fM∞(X)) ≤ 0.

This contradicts to the assumption that M is K-stable and not biholomorphic
to M∞. Thus β̄ ∈ E and Theorem 1.1 is proved.

We end up this section with a proof of Lemma 6.10. Put

Ik =

∫
M∞

√
−1 ∂F ∧ ∂̄F ∧ ω1 ∧ · · · ∧ ωk ∧

(
1

`
ωFS

)n−k−1

, (6.32)

where F = log(− log ||τ∞||20) and k = 0, · · · , n− 1.
First we observe

I0 =

∫
M∞

√
−1 ∂F ∧ ∂̄F ∧

(
1

`
ωFS

)n−1

< ∞. (6.33)

To see this, we compute

∂F =
Dτ∞

τ∞ (− log ||τ∞||20)
,

where D denotes the covariant derivative. Hence, we can write

`n−1 I0 =

∫
M∞

√
−1Dτ∞ ∧Dτ∞

|τ∞|2 (− log ||τ∞||20)2
∧ ωn−1

FS .

It is known that the integral on the right is finite and is because the Poincaré
metric on the punctured disc has finite volume. To see it, we choose a resolution
π : M̃ 7→M∞ such that π−1(τ−1(0)) supports in a normal-crossing divisor with
irreducible components Da (a = 1, · · · ,m). As usual, we denote by [Da] the
line bundle corresponding to Da. Then we have sections fa of [Da] such that
Da = {fa = 0} ⊂ M̃ and τ∞ ◦ π = fk1

1 · · · fkmm , where ka ≥ 1 are multiplicities
of τ ◦ π along Da. Furthermore, we can have Hermitian norms || · ||a for [Da]
such that for some constant c > 0,

|fa||a < 1 and π∗||τ∞||20 = c

m∏
a=1

||fa||2kaa on M̃.
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Without loss of generality, we may assume that c = 1. 34 Then we have

π∗
( √

−1Dτ∞ ∧Dτ∞
|τ∞|2 (− log ||τ∞||20)2

)
=

√
−1 (

∑
a ka f

ka−1
a Dfa) ∧ (

∑
a ka faDfa)∏

a |fa|2ka (−
∑
a ka log ||fa||2a)2

.

Using the Cauchy-Schwartz inequality and the fact that − log ||fa||2a > 0, we
can deduce from the above∫
M∞

√
−1Dτ∞ ∧Dτ∞

|τ∞|2 (− log ||τ∞||20)2
∧ ωn−1

FS ≤ m

m∑
a=1

∫
M̃

√
−1Dfa ∧Dfa

|fa|2 (− log ||fa||2a)2
∧ π∗ωn−1

FS .

A straightforward computation shows∫
M̃

√
−1Dfa ∧Dfa

|fa|2 (− log ||fa||2a)2
∧ π∗ωn−1

FS < ∞, a = 1, · · · ,m.

Then (6.33) follows.
We will prove Lemma 6.10 by induction. Suppose that we have proved for

i < k
Ii < ∞ and Vi = V0, (6.34)

where

Vi =

∫
M∞

ω1 ∧ · · · ∧ ωi ∧
(

1

`
ωFS

)n−i
.

We need to prove (6.34) for k. Using the induction assumption, we have

Vk −Vk−1

= lim
ε→0

∫
M∞

γε ω1 ∧ · · · ∧ ωk−1 ∧
√
−1 ∂∂̄ ψk ∧

(
1

`
ωFS

)n−k
= lim

ε→0

∫
M∞

ψk
√
−1 ∂∂̄γε ∧ ω1 ∧ · · · ∧ ωk−1 ∧

(
1

`
ωFS

)n−k
By a direct computation, we have

√
−1 ∂∂̄ γε =

k ε η̃′ ωFS
− log ||τ∞||20

+
(
− εη̃′ + ε2η̃′′

) √
−1 ∂F ∧ ∂̄F. (6.35)

Since ψk is bounded, we can deduce from this∣∣∣∣∫
M∞

ψk
√
−1 ∂∂̄γε ∧ ω1 ∧ · · · ∧ ωk−1 ∧ ωn−kFS

∣∣∣∣ ≤ C ε (Vk−1 + Ik−1).

Thus the integral on the left-handed side above converges to 0 as ε goes to 0,
so we have Vk = Vk−1 = V0 < ∞.

34It is clear from the definition in (6.32) that I0 being finite or not won’t be changed by
replacing || · ||0 with an equivalent norm.
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It follows from (6.32) that

Ik = Ik−1 − lim
ε→0

∫
M∞

γε ∂F ∧ ∂̄F ∧ω1 ∧ · · · ∧ωk−1 ∧ ∂∂̄ ψk ∧
(

1

`
ωFS

)n−k−1

.

Denote by Ĩ(ε) the second term on the right-handed side above, then

Ĩ(ε) =

∫
M∞

ψk ∂∂̄
(
γε ∂F ∧ ∂̄F

)
∧ ω1 ∧ · · · ∧ ωk−1 ∧

(
1

`
ωFS

)n−k−1

. (6.36)

A straightforward computation yields

∂∂̄
(
γε ∂F ∧ ∂̄F

)
= − ε η̃′ ∂F ∧ ∂̄F ∧ ∂∂̄F − γε ∂∂̄F ∧ ∂∂̄F.

Note that `′ = k ` and

√
−1 ∂∂̄F =

k ωFS
− log ||τ∞||20

−
√
−1 ∂F ∧ ∂̄F.

It follows

∂∂̄
(
γε ∂F ∧ ∂̄F

)
=

k (εη̃′ − 2γε)
√
−1 ∂F ∧ ∂̄F ∧ ωFS

− log ||τ∞||20
+
γε k

2 ωFS ∧ ωFS
(− log ||τ∞||20)2

.

Thus, by the induction assumption, we can derive

lim
ε→0

Ĩ(ε) = 2 `′ Ĩk,1 − (`′)2 Ĩk,2,

where

Ĩk,1 =

∫
M∞

ψk
− log ||τ∞||20

√
−1 ∂F ∧ ∂̄F ∧ ω1 ∧ · · · ∧ ωk−1 ∧

(
1

`
ωFS

)n−k
Ĩk,2 =

∫
M∞

ψk
(− log ||τ∞||20)2

ω1 ∧ · · · ∧ ωk−1 ∧
(

1

`
ωFS

)n−k+1

.

Since ψk is bounded, we have for some constant C > 0

|Ĩk,1| ≤ C Ik−1 and |Ĩk,2| ≤ CVk−1.

Hence, by the induction assumption,

Ik = Ik−1 + 2 `′ Ik,1 − (`′)2 Ik,2 < ∞.

Note that ∂γε = ε η̃′ ∂F and |η̃′| ≤ 1, then, in view of (6.32), we have∫
M∞

√
−1 ∂γε ∧ ∂̄γε ∧ ω1 ∧ · · · ∧ ωk ∧

(
1

`
ωFS

)n−k−1

≤ ε2 Ik.

Since Ik is finite, we see that the integral on the left-handed side above tends
to 0 as ε goes to 0, and consequently, Lemma 6.10 is proved.
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7 Appendix 1: The proof of Lemma 5.8

In this appendix, we complete the proof of Lemma 5.8. We will adopt the
notations in Section 5, particularly, in the proof of the simple case of Lemma
5.8. If β∞ = 1, then there is nothing to be proved since the singular set Sx is
of complex dimension at least 2. So we may assume that β∞ < 1. By using (2)
of Lemma 5.5, we get a decomposition Sx = S0

x ∪ S̄x satisfying: S̄x is a subcone
of complex codimension at least 2 and any y ∈ S0

x admits a tangent cone Cy of
the form Cn−1 × C′y. Furthermore, C′y is the standard 2-dimensional cone with

angle 2πβ̄, so Lemma 5.8 has been proved for such a Cy.
First we have xi ∈ M and ri > 0 such that (M, r−2

i ωi, xi) converge to the
cone (Cx, gx, o). This implies that there are lim δi = 0 and diffeomorphisms

φ̃i : V (x; δi) 7→ M\Tδi(D), Tδi(D) = { z | di(z,D) ≤ δi }, (7.1)

where di(·, D) denotes the distance from D with respect to r−2
i ωi, satisfying:

||r−2
i φ̃∗iωi − ωx||C6(V (x;δi)) ≤ δi. (7.2)

We may further assume that `i = r−2
i are integers.

Secondly, by our assumption, there are integers kj = s−2
j such that (Cx, kjgx, y)

converge to (Cy, gβ̄ , o), where Cy = Cn−1×C′y with the flat conic metric gβ̄ in the
case of Lemma 5.8 already considered. Therefore, there are diffeomorphisms

ϑj : V (y; j−1) ⊂ Cy 7→ Cx\Sx (7.3)

satisfying:

||s−2
j ϑ∗jωx − ωβ̄ ||C6(V (y;j−1)) ≤

1

j
, (7.4)

where ωβ̄ is the Kähler form of gβ̄ .
It follows from (7.1) to (7.4) that for any δ > 0, there are jδ and iδ such

that for j ≥ jδ and i ≥ iδ, we have φ̃i · ϑj : V (y; j−1) 7→M\Tδi(D) satisfying:

||kj`i ϑ∗j φ̃∗iωi − ωβ̄ ||C6(V (y;j−1)) ≤ δ. (7.5)

Consider Cy × C as a bundle over Cy with the norm e−|z
′|2−|zn|2β̄ | · |2. Any

holomorphic function f on Cn can be regarded as its section since Cy is bi-
holomorphic to Cn. Set f0 = α0, f1 = α1z1, · · · , fn = α1zn, where αk > 0
(k = 0, · · · , n) are chosen such that∫

Cn−1×C′y
|fk|2 e−(|z′|2+|zn|2β̄) ωnβ̄ = 1. (7.6)

Clearly, αk are uniformly bounded. Applying Lemma 5.7 to each fk,35 for j

and i sufficiently large, we get an isomorphism ψi,j from Cx × C onto K
−kj`i
M

over V (y; j−1) satisfying:

||ψi,j(fk)||2 = |fk|2 e−(|z′|2+|zn|2β̄) and ||∇ψi,j ||C4(V (y;j−1)) ≤ δ. (7.7)

35Here we replace M∞ by M and φ by φ̃i ·ϑj . In fact, we only need an easy case for Lemma
5.7 since the tangent cone Cy is simple.
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Note that Lemma 5.8 has been proved for simple cones like Cy, so we can apply
the arguments for proving the partial C0-estimate in Section 5 to construct

holomorphic sections Ski,j of K
−kj`i
M over M such that

sup
V (y;j−1)∩B10(o,gβ̄)

∣∣(ψi,j)∗(Ski,j) − fk
∣∣ ≤ ε

2
, (7.8)

where ε can be as small as we want so long as δ is sufficiently small. Moreover,
by Corollary 4.2, we have

||∇Ski,j ||i ≤ C, (7.9)

where || · ||i denotes the Hermitian norm associated to ωi. Note that C always
denotes a uniform constant. Hence, for certain c > 0 depending only on α0, we
have

||S0
i,j ||i ≥ c on φ̃i(ϑj(B10(o, gβ̄))). (7.10)

Define a holomorphic map Fi,j : φ̃i(ϑj(B10(o, gβ̄))) 7→ Cn by

Fi,j =

(
S1
i,j(x)

S0
i,j(x)

, · · · ,
Sni,j(x)

S0
i,j(x)

)
. (7.11)

Then Fi,j · φ̃i · ϑj converge to the map (f1/f0, · · · , fn/f0) and in the smooth
topology outside the singular set {(z′, 0)} as j, i → ∞, therefore, by taking j
and i sufficiently large if necessary, we have∣∣∣Fi,j(φ̃i(ϑj(z))) − (f1/f0, · · · , fn/f0) (z)

∣∣∣ ≤ ε, ∀ z ∈ Uj , (7.12)

where
Uj = {(z′, zn) ∈ B10(o, gβ̄) | |zn|β̄ > j−1 } ⊂ V (y; j−1).

We may assume B8sjri(xi, ωi) ⊂ φ̃i(ϑj(B10(o, gβ̄))). It follows from (7.12) that
for ε sufficiently small and i sufficiently large, Fi,j is a holomorphic map from
B8sjri(xi, ωi) onto its image which contains B8−2ε(o, gβ̄).

By the derivative estimate (7.9), we get

sup
B8sjri

(xi,ωi)

||dFi,j ||ωi ≤ C (sj ri)
−2. (7.13)

This is equivalent to
F ∗i,j ω0 ≤ C (sj ri)

−2 ωi, (7.14)

where ω0 denotes the Euclidean metric on Cn.
Next we claim: For j sufficiently large, Fi,j(D ∩ B7sjri(xi, ωi)) converge to

a local divisor Dj ⊂ Cn as i goes to ∞. It will be proved by applying the
Bishop theorem. For this purpose, we need to bound the volume of Fi,j(D ∩
B7sjri(xi, ωi)). Since (Cx, s−2

j gx, y) converge to the standard cone Cn−1 × C′y
with the metric gβ̄ , for j and i sufficiently large, Fi,j maps D ∩ B8sjri(xi, ωi)
into a tubular neighborhood:

T8,ε = {(z′, zn) | |z′| < 8, |zn| < ε}.
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This implies that the intersection of complex line segments {(z′, zn) | |zn| ≤ 6}
with Fi,j(D ∩ B8sjri(xi, ωi)) is independent of z′ with |z′| < 7.5. Using the
slicing argument in [CCT02] 36, one can show that for each z′ with |z′| < 7.5, the
complex line segment {(z′, zn) | |zn| ≤ 6} intersects with Fi,j(D∩B8sjri(xi, ωi))
at exactly m points (counted with multiplicity), where (1− β̄) = m (1− β∞).

Let η̃ : R 7→ R be a cut-off function satisfying: η̃(t) = 1 for t ≤ 56, η̃(t) = 0
for t > 60, |η̃′| ≤ 1 and |η̃′′| ≤ 2, then we have∫

Fi,j(D∩B8sjri
(xi,ωi))

η̃(|z′|2)ωn−1
0

≤
∫
Fi,j(D∩B8sjri

(xi,ωi))

(η̃ + (n− 1) |zn|2(η̃′ + |z′|2η̃′′)) (dz′ ∧ dz̄′)n−1.

It follows ∫
Fi,j(D∩B7.4sjri

(xi,ωi))

ωn−1
0 ≤ 200nm. (7.15)

Note that the limit of D coincides with Sx modulo a subset of Hausdorff codi-
mension at least 4 under the Gromov-Hausdorff convergence of (M, r−2

i ωi, xi)
to (Cx, ωx, o).37 It follows that F∞,j(Sx ∩B7sj (y, gx)) coincides with Dj .

The estimate (7.14) immediately implies∫
D∩B6sjri

(xi,ωi)

F ∗i,jω
n−1
0 ≤

∫
D∩B6sjri

(xi,ωi)

(sjri)
−2n+2 ωn−1

i .

Applying the standard monotonicity to subvariety Fi,j(D), we have

1 ≤
∫
Fi,j(D)∩B4(o,ω0)

ωn−1
0 ≤

∫
D∩B5sjri

(xi,ωi)

F ∗i,jω
n−1
0 .

Then, letting i go to ∞, we can easily deduce from the above

s2n−2
j ≤ s2n−2

j

∫
Sx∩B5sj

(y,ωx)

F ∗∞,jω
n−1
0 ≤ M2n−2(Sx ∩B5sj (y, gx)), (7.16)

where M2n−2 denotes the (2n−2)-dimensional Hausdorff measure corresponding
to gx.

For convenience, we summarize the above as follows with one extra property.

Lemma 7.1. For any ε > 0 small, there is a jε such that for any j ≥ jε, the
Lipschtz map F∞,j maps B7sj (y, gx) into B7+ε(o, gβ̄) satisfying:

(1) Its image contains B7−ε(o, gβ̄);

36We also refer the readers to the proof of Theorem 3.2, C4. In fact, it is easier here since
for generic z′, all the intersections are positive and transverse.

37Clearly, the limit lies in Sx. On the other hand, by [CCT02], there is no singular point of
Cx outside the limit of D for which there is a tangent cone of type Cn−1 × C′y .
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(2) F∞,j(Sx ∩B7sj (y, gx)) is a local divisor Dj ⊂ T8,ε;

(3) For any δ > 0, there is an ν = ν(δ) such that F−1
∞,j(T6,ν) ⊂ Tδ(Sx) ∩

B7sj (y, gx).

Proof. We have shown the validity of (1) and (2). For (3), we can prove by
contradiction. If not true, then F−1

∞,j(Dj ∩ B6.5(o, gβ̄)) has at least two dis-
tinct components, one lies in Sx while another is not. This implies that for
i sufficiently large, the pre-image F−1

i,j (Fi,j(D) ∩ B6.5(o, gβ̄)) has at least two
components. On the other hand, for j and i sufficiently large, when restricted
to B10sjri(xi, ωi)\Tδ(D), Fi,j is biholomorphic onto its image. It follows from
(7.12) and (7.13) that Fi,j(p) = Fi,j(p

′) for p, p′ ∈ B10sjri(xi, ωi) only if di(p, p
′)

is sufficiently small. This implies that F−1
i,j (z) is either a point or a subvariety

for any z ∈ B8(o, gβ̄). By (7.10), B10sjri(xi, ωi) lies in some CN ′ , where N ′

may depend on i, j. Thus Fi,j is one-to-one on B7sjri(xi, ωi). This leads to a
contradiction, so (3) is proved.

Next we observe: For i, j sufficiently large, there are uniformly bounded
functions ϕi,j on B8sjri(xi, ωi) satisfying:

(sjri)
−2ωi =

√
−1 ∂∂̄ ϕi,j on B8sjri(xi, ωi). (7.17)

This is because ||S0
i,j ||i is close to an uniform constant for j, i sufficiently large.

A consequence of this observation is that the volume of D ∩B7sjri(xi, ωi) with
respect to (sjri)

−2ωi is uniformly bounded. To see this, we recall a well-
known fact: If T is a positive, ∂∂̄-closed (1,1) current on Br(o, ω0), then for
any bounded function ϕ on Br(o, ω0), we have

(TxBR−κ(o, ω0)) (∂∂̄ϕ) ≤ Cκ

(
sup

BR(o,ω0)

|ϕ|

)
T (ω0),

where Cκ depends only on κ. 38 For i, j sufficiently large, we have

Fi,j(B7sjri(xi, ωi)) ⊂ B7+ε(o, ω0) ⊂ B7.4−ε(o, ω0) ⊂ Fi,j(B7.4sjri(xi, ωi)).

May assume that 3n ε < 1. Put

Ta(ξ) =

∫
Fi,j(D)∩B8−aκ(o,ω0)

ξ ∧ ωa−1
i ∧ ωn−a−1

0 ,

where κ = 1
3n and a = 1, · · · , n− 1. Then, applying the above fact to currents

Ta and using (7.15), we get∫
D∩B7sjri

(xi,ωi)

ωn−1
i ≤ C (sjri)

2n−2.

38TxU denotes the restriction to U and this can be easily proved by using a cut-off function
and integration by parts.
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Letting i go to ∞, we have

M2n−2(Sx ∩B7sj (y, ωx)) ≤ C s2n−2
j . (7.18)

For each y ∈ S0
x, we set s(y) = sj for a sufficiently large j such that Lemma 7.1

holds. Define U to be the union of all such balls B6s(y)(y, ωx), S ′x = Sx ∩U and
S̄ ′x = Sx\S ′x, then S̄ ′x is closed and contained in S̄x. It follows from (7.18) and a
simple covering argument that for any R > 0 and open neighborhood B of S̄ ′x,
there is a constant CR,B such that

M2n−2(Sx ∩BR(o, ωx)\B) ≤ CR,B . (7.19)

The following is the key lemma to our proof of Lemma 5.8.

Lemma 7.2. We adopt the notations above. Assume that (1) ξ : R 7→ [0, 1]
is a smooth function with ξ(t) = 1 for any t ≥ 8ε and (2) f is a holomorphic
function on F∞,j(B7sj (y, gx)) such that |f(z′, zn)| ≥ |zn| whenever |zn| ≥ 8ε.
Then there is a uniform constant C such that

s2−2n
j

∫
B6sj

(y,gx)

|∇(h · F∞,j)|2ωx ω
n
x

≤ C

∫
F∞,j(B7sj

(y,gx))

√
−1 ∂h ∧ ∂̄h ∧ (dz′ ∧ dz̄′)n−1, (7.20)

where h(z′, zn) = ξ(|f |2(z′, zn)).

Proof. It suffices to prove the corresponding inequality for each Fi,j and then
let i go to ∞. As above, let η̃ : R 7→ R be a cut-off function such that η̃(t) = 1
for t ≤ 40, η̃(t) = 0 for t > 46, |η̃′| ≤ 1 and |η̃′′| ≤ 2, then we have

√
−1 ∂∂̄ η̃(|z′|2) ≤ 200ndz′ ∧ dz̄′.

By our assumptions (1) and (2), we can show that η̃(|z′|2) |dh|2 vanishes near
the boundary of Fi,j(B7sjri(xi, ωi)). It is easy to see

∂h ∧ ∂∂̄h = 0.

Using these facts, (7.17) and integration by parts, we can deduce

(sjri)
−2n

∫
B7sjri

(xi,ωi)

η(|z′|2) |∇(h · Fi,j)|2ωi ω
n
i

= n

∫
Fi,j(B7sjri

(xi,ωi))

η(|z′|2)
√
−1 ∂h ∧ ∂̄h ∧ (

√
−1 ∂∂̄(ϕi,j · F−1

i,j ))n−1

≤ C

∫
Fi,j(B7sjri

(xi,ωi))

√
−1 ∂h ∧ ∂̄h ∧ (dz′ ∧ dz̄′)n−1.

Then the lemma follows by letting i go to ∞.
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Now we complete the proof of Lemma 5.8. Let ε̄ be given in Lemma 5.8.
Fix a small ε0 > 0, since S̄ ′x is closed and has vanishing Hausdorff measure of

dimension strictly bigger than 2n−4, we can find a finite cover of S̄ ′x∩Bε̄−1(x, gx)
by balls Bra(ya, gx) (a = 1, · · · , l) satisfying:

(i) ya ∈ S̄ ′x and 2ra ≤ ε0/l;

(ii)
∑
a r

2n−3
a ≤ 1;

We denote by η̄ a cut-off function: R 7→ R satisfying: 0 ≤ η̄ ≤ 1, |η̄′(t)| ≤ 2
and

η̄(t) = 1 for t > 1.6 and η̄(t) = 0 for t ≤ 1.1.

Set χ =
∏
a χa, where

χa(y) = η̄

(
d(y, ya)

ra

)
if y ∈ B2ra(ya, gx) and χa(y) = 1 otherwise.

Then χ vanishes on the closure of B = ∪aBra(ya, gx) which contains S̄ ′x ∩
Bε̄−1(x, gx), furthermore, χ satisfies∫

Cx
|∇χ|2 ωnx ≤ l

∫
B2ra (xa,gx)

|∇χa|2 ωnx ≤ C l
∑
a

r2n−2
a ≤ C ε0, (7.21)

where C is a uniform constant.
There is a finite cover of Sx ∩ Bε̄−1(x, gx)\B by balls B6sb(yb, gx) for which

Lemma 7.1 holds (b = 1, · · · , N). Choose smooth functions {ζb} associated to
the cover {B6sb(yb, gx)} satisfying:

(1) 0 ≤ ζb ≤ 1, |∇ζb| ≤ s−1
b ;

(2) supp(ζb) is contained in B6sb(yb, gx);

(3)
∑
b ζb ≡ 1 near Sx ∩Bε̄−1(x, gx)\B.

Then {ζb}, 1 −
∑
b ζb form a partition of unit for the cover {B6sb(yb, gx)} and

Bε̄−1(x, gx).
As before, we denote by η a cut-off function: R 7→ R satisfying: 0 ≤ η ≤ 1,

|η′(t)| ≤ 1 and

η(t) = 0 for t > log(− log δ̄3) and η(t) = 1 for t < log(− log δ̄).

For each b, let Fb be the map from B7sb(yb, gx) into B7+ε(o, gβ̄) and Db ⊂
B7+ε(o, gβ̄b) be the divisor given by Lemma 7.1. Let ν be given in (3) of Lemma
7.1 for any small δ. It is clear from its proof that ν can be chosen independent of
b. May assume that 10ε > ν and fb be a local defining function of Db satisfying
(2) in Lemma 7.2. We define a function γε̄,b on B7sb(yb, gx) as follows: If
|fb|(Fb(y)) ≥ ε̄/3, put γε̄,b(y) = 1 and if |fb|(Fb(y)) < ε̄, put

γε̄,b(y) = η

(
log

(
− log

(
|fb|(Fb(y))

ε̄

)))
. (7.22)
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For any ε′0, by choosing δ̄ sufficiently small, we can deduce from Lemma 7.2∫
B6sb

(yb,gx)

|∇γε̄,b|2 ωnx ≤ ε′0 s
2n−2
b . (7.23)

Moreover, by (3) of Lemma 7.1, we may have γε̄,b(y) = 1 if d(y,Sx) ≥ ε′0. Now
we define

γε̄(y) = χ(y) (1−
∑
b

ζb(y) +
∑
b

ζb(y) γε̄,b(y)). (7.24)

Then γε̄(y) = 1 whenever y is outside B and d(y,Sx) ≥ ε′0. Also γε̄ vanishes
in a neighborhood of Sx. It follows from (7.24) and (7.21)∫

Bε̄−1 (o,gx)

|∇γε̄|2 ωnx ≤ C

(
ε0 +N

∑
b

∫
B6sb

(yb,gx)

|∇(ζb(1− γε̄,b))|2 ωnx

)
.

By (7.23) and (7.16), we have∫
B6sb

(yb,gx)

|∇(ζb(1− γε̄,b))|2 ωnx ≤ 4 ε′0 s
2n−2
b ≤ 4 ε′0 M2n−2(Sx ∩B5sb(yb, gx)).

Set U ′ = ∪bB5sb(yb, gx), then B′ = B\Ū ′ is a neighborhood of S̄ ′x ∩Bε̄−1(x, gx).
It follows from the above two estimates and (7.19)∫

Bε̄−1 (o,gx)

|∇γε̄|2 ωnx ≤ C
(
ε0 + 4N2 Cε̄−1,B′ ε

′
0

)
.

Thus, we can complete the proof of Lemma 5.8 by taking ε0 and then ε′0 suffi-
ciently small.

8 Appendix 2: A previous result of Tian-Wang

In this appendix, for the readers’ convenience, we give an outlined proof of
a result in [TW12] on almost Kähler-Einstein manifolds. This is needed for
proving the partial C0-estimate when cone angles 2πβ converge to 2π. For
simplicity, we need to consider only the following situation: 39 Let (M, ω̃i) be a
sequence of smooth Kähler manifolds with Kähler class 2πc1(M) and satisfying:

Ric(ω̃i) ≥ µiω̃i, where limµi = 1.

Theorem 8.1. Assume that (M, ω̃i) converge to (M∞, d∞) in the Gromov-
Hausdorff topology. Then M∞ is smooth outside a closed subset S of complex
codimension at least 2 and the distance d∞ is induced by a Kähler-Einstein
metric ω∞ on M∞\S. Moreover, any tangent cone Cx of M∞ is Kähler-Ricci
flat outside a closed subcone Sx of complex codimension at least 2.

39All the results in this appendix are taken from [TW12]. I thank B. Wang for agreeing to
my doing so.
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The rest of this section is devoted to an outlined proof of this theorem. First
we observe that the sequence (M, ω̃i) is almost Kähler-Einstein in the sense of
[TW12] since we have∫

M

|Ric(ω̃i) − ω̃i| ω̃ni ≤ n

∫
M

(Ric(ω̃i) − µiω̃i) ∧ ω̃n−1
i + (1− µi)

∫
M

ω̃ni

= 2 (1− µi)
∫
M

ω̃ni → 0. (8.1)

The following is crucial and a special case of Proposition 3.1 in [TW12].

Proposition 8.2. For any α, r ∈ (0, 1], there are δ = δ(n, α) and ε = ε(n, α)
with the property: If (M,ω(t)) is a Ricci flow:

∂ω(t)

∂t
= −Ric(ω(t)) (8.2)

and satisfies:

Ric(ω(0)) ≥ 0, and
Vol(Br(x0, ω(0)))

r2n
≥ (1− δ) cn, (8.3)

then for any x ∈ Bεr(x0, ω(0)) and t ∈ (0, (εr)2], we have

Vol(B√t(x, ω(t))) ≥ κn t
n, |Rm|(ω(t)) ≤ αt−1 + (εr)−2,

where κn is a uniform constant and Rm denotes the curvature tensor.

Proof. It suffices to prove the curvature estimate. The volume bound follows
from this curvature estimate.

If this proposition is false, then we have sequences δk, εk → 0, (Mk, ωk(t))
satisfying (8.2) and xk ∈Mk such that (8.15) holds while the curvature estimate
fails. By scaling, we may assume that r = 1.

Following the proof of Perelman’s pseudo-locality theorem (Theorem 10.1 in
[Pe02]), we can find uk > 0 with compact support in B1(xk, ωk(0)) satisfying:∫

B1(xk,ωk(0))

u2
k = 1 abd F(uk) ≤ −η, (8.4)

where

F(uk) =

∫
B1(xk,ωk(0))

{
2|∇uk|2 − 2u2

k log uk − 2n
(

1 + log
√

2π
)
u2
k

}
. (8.5)

Then by a result of Rothaus [RO81], we get a minimizer ϕk of Fk satisfying:

−∆ϕk − ϕk logϕk − n
(

1 + log
√

2π
)
ϕk = λk ϕk. (8.6)

Here 2λk = F(ϕk) ≤ F(ūk) ≤ −η < 0. By using the Sobolev inequality,
we can easily show that |λk| ≤ C for some uniform constant C. On the other
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hand, using (8.6) and the Moser iteration, we can bound ||ϕk||C0 . Since the
Ricci curvature of ωk(0) is positive, by the gradient estimate of Cheng-Yau, we
have

|∇ϕk|(x) ≤ C2(n, d(x, ∂B1(xk, ωk(0)))), where x ∈ B1(xk, ωk(0)). (8.7)

Without loss of generality, we may assume that (Mk, ωk(0), xk) converge to
(M∞, ω∞, x∞) in the Gromov-Hausdorff topology. In fact, by the condition on
volume ratios, M∞ = R2n and ω∞ is the Euclidean metric. It follows from
the above that by taking a subsequence if necessary, ϕk converge to a locally-
Lipschtz function ϕ∞ on B1(x∞, ω∞) ⊂M∞.

Next, we show

Claim: ϕ∞ can be extended to be a continuous function on B1(x∞, ω∞) with

ϕ∞|∂B1(x∞,ω∞) = 0. (8.8)

It suffices to show that limr→0 ||ϕ∞||L∞(Br(z)) = 0 for arbitrary z ∈ ∂B1(x∞).
Here we denote by Br(z) the ball in M∞ with center z and radius r.

For any z ∈ ∂B1(x∞). Suppose zk ∈ ∂B1(xk, ωk(0)) and lim zk = z. Put

Md,k = sup
Bd(zk,ωk(0))

ϕk − inf
Bd(zk,ωk(0))

ϕk, ψd,k = M2d,k − ϕk.

Note that by trivial extension, we can regard ϕk as defined on Mk. Using (8.6),
in the sense of distribution, we have(

−∆ −
(
n+ n log

√
2π + λk

))
ψd,k ≥ −C3, (8.9)

where C3 is a uniform constant independent of k. Then, by the standard Moser
iteration, we obtain

(2d)−2n

∫
B2d(zk,ωk(0))

ψd,k ≤ C4

(
inf

Bd(zk,ωk(0))
ψd,k + d2

)
. (8.10)

It is not hard to see that

Vol (B2d(zk, ωk(0))\B1(xk, ωk(0))) > cn10−n(2d)2n

and
inf

Bd(zk,ωk(0))
ψd,k = M2d,k −Md,k.

Plugging these into (8.10), we get

10−ncnM2d,k < C4

(
M2d,k −Md,k + d2

)
.

This implies for some γ ∈ (0, 1),

Md,k < γM2d,k + d2. (8.11)
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Let d = 2−i (i > 1), iteration of (8.11) on i yields

M2−i,k < γi−1M 1
2 ,k

+
γi−1 − 4−i+1

4(4γ − 1)
.

Since ||ϕk||L∞(B1(xk,ωk(0))) ≤ C1, letting k →∞, we obtain

||ϕ∞||L∞(B2−i (z))
≤ C1 γ

i−1 +
γi−1 − 4−i+1

4(4γ − 1)
. (8.12)

Then our Claim follows.

By the standard arguments, we can prove that on B1(x∞), ϕ∞ satisfies

−∆ϕ∞ − ϕ∞ logϕ∞ −
(
n + n log

√
2π + λ∞

)
ϕ∞ = 0. (8.13)

Consequently, ϕ∞ ∈ C∞(B1(x∞)).
Now we can derive a contradiction. In fact, by trivial extension, we can

regard ϕ∞ ∈W 1,2
0 (R2n). Then, by (8.13), we have∫

R2n

(
|∇ϕ∞|2 − ϕ2

∞ logϕ∞ − n
(

1 + log
√

2π
)
ϕ2
∞

)
= λ∞ ≤ −η < 0.

This contradicts to the Logarithmic Sobolev inequality for R2n (cf. [Gro93])
which implies∫

R2n

(
|∇ϕ∞|2 − ϕ2

∞ logϕ∞ − n
(

1 + log
√

2π
)
ϕ2
∞

)
≥ 0.

Therefore, our proposition is proved.

Corollary 8.3. There is a δ = δ(n) with the property: If (M,ω(t)) is a nor-
malized Ricci flow:

∂ω(t)

∂t
= λ0 ω(t) − Ric(ω(t)) (8.14)

where λ0 is a constant with |λ0| ≤ 1. Suppose that

Ric(ω(0)) ≥ 0 on B1(x0, ω(0)) and Vol(B1(x0, ω(0))) ≥ (1− δ) cn. (8.15)

Then for any x ∈ B 3
4
(x0, ω(0)) and t ∈ (0, 2δ], we have

Vol(B√t(x, ω(t))) ≥ κn t
n and |Rm|(ω(t)) ≤ t−1.

This follows from applying Proposition 8.2 to

ω̃(t) = (1− 2λ0t)ω(
log(1− 2λ0t)

−λ0
)

which is a solution of Ricci flow.
Next we estimate the change of distance function along (8.14).
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Proposition 8.4 (Theorem 4.1 in [TW12]). Let δ and (M,ω(t)) be as in last
corollary. Then for any x1, x2 ∈ B 1

4
(x0, ω(0)), we have

l − C0E
1

2(2n+3) ≤ dω(δ)(x1, x2) ≤ l + C l E
1

6n(2n+3) , (8.16)

where l = dω(0)(x1, x2), C0, C are uniform constants and E is defined as

E = E(δ) =

∫ 2δ

0

∫
B 1

2
(x0,ω(0))

|R(ω(t)) − nλ0|ω(t)n ∧ dt.

Proof. We will sketch its proof and refer to [TW12] for more details. We will
always denote by C0, C uniform constants.

First we observe that for any x ∈ B 1
2
(x0, ω(0)) and s ∈ (0, δ],

|Ric(ω(s))− λ0 ω(s)|(x) ≤ C s−(n+2)E(s)
1
2 . (8.17)

This follows from the curvature estimates in Corollary 8.3 and applying Moser’s
iteration to the following curvature evolutions on B1(x0, ω(0)):

∂|h|
∂t

≤ 1

2
∆|h| + |Rm| |h|,

∂H

∂t
=

1

2
∆H + |h|2 + λ0H,

where h(t) = Ric(ω(t))− λ0ω(t) and H = trω(t)h(t).
Secondly, we recall an estimate of R. Hamilton: If Ric(ω(t))(x) ≤ K for any

x in Br(xi, ω(t)) (i = 1, 2), then

∂dω(t)(x1, x2)

∂t
≥ λ0

2
dω(t)(x1, x2) − (Kr + r−1).

Let t1 ∈ (0, δ] be the maximum of t such that B√t(xi, ω(t)) ⊂ B3/4(x0, ω(0))
(i = 1, 2), then by Corollary 8.3, for any t ∈ [0, t1], we have

dω(t)(x1, x2) ≥ dω(0)(x1, x2) − C0

√
t. (8.18)

This implies that t1 = δ. On the other hand, by (8.17) and integrating along
(8.14), we get ∣∣∣∣ log

(
dω(δ)(x1, x2)

dω(t0)(x1, x2)

) ∣∣∣∣ ≤ C0 t
−(n+1)
0 E

1
2 . (8.19)

Choosing t0 at the order of E
1

2n+3 , we can deduce the LHS of (8.16) from (8.18)
and (8.19).

In the following, we show the RHS of (8.16). The idea is roughly as follows:
The LHS says that the identity map is an almost expanding map, but it is also
an almost volume preserving map if E is sufficiently small, so it should be also
an almost isometry. Let us examine it more closely.

66



Assume that Br0(x, ω(0)) be the largest geodesic ball which is contained in

Bl(x1, ω(0)) and disjoint from Bl−ε(x1, ω(δ)), where ε = C0E
1

2(2n+3) . By the
volume comparison and the smallness of the change of volume along (8.14), we
can deduce

Volω(δ)(Br0(x, ω(0))) ≤ Volω(0)(Bl(x, ω(0))) − Volω(δ)(Bl−ε(x, ω(δ))) + E.

It follows that whenever C E
1

2(2n+3) << l,

r0 ≤
(
|V −1
l − 1|+ Cl−1ε

) 1
2n l + ε,

where

Vl = inf

{
Volω(δ)(Br(x, ω(δ)))

r2n

∣∣Br(x, ω(δ)) ⊂ B 1
2
(x0, ω(0)), r ≤ l

}
.

By the definition of r0, we can find x3 ∈ B3r0(x2, ω(0)) ∩Bl−ε(x1, ω(δ)). Then
we claim

dω(δ)(x2, x3) ≤ C r1, where r1 = max{3ε, r0}.

This claim can be proved by a simple covering argument: Join x2 to x3 by
minimal ω(0)-geodesic γ and cover it by N balls B2r1(zi, ω(δ)) such that zi ∈ γ
and Br1(zi, ω(δ)) are mutually disjoint. Clearly, all Br1(zi, ω(δ)) are contained
in B5r1(x2, ω(0)), so we have

NVl r
2n
1 ≤ Volω(δ)(∪iBr1(zi, ω(δ))) ≤ Volω(0)(B5r1(x2, ω(0))) + E.

Then N is bounded from above by C(1 + Er−2n
1 ) and consequently, our claim

follows. It follows from the above claim and the estimate on r0

dω(δ)(x1, x2) ≤ C
(
|V −1
l − 1| 1

2n + l
1

2n E
1

4n(2n+3)

)
l (8.20)

whenever E << l2(2n+3).
Now we can conclude the proof. Since the curvature of ω(δ) is bounded on

B3/4(x, ω(0))), there is a ξ = ξ(n, δ) such that Ar ≥ 1 − Cr2 for any r ≤ ξ. It
follows from (8.20)

dω(δ)(y1, y2) ≤ r (1 + Cr
1
n + r

1
2n E

1
4n(2n+3) )

whenever y1, y2 ∈ B1/2(x, ω(0))) and dω(0)(y1, y2) ≤ r ≤ ξ. Then our proposi-
tion follows from this by a simple covering argument.

Now we return to the proof of Theorem 8.1. Consider the normalized Ricci
flow with initial metric ω̃i as in Theorem 8.1:

∂ωi(t)

∂t
= ωi(t) − Ric(ωi(t)), ωi(0) = ω̃i. (8.21)
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Note that (8.2) has a unique solution ωi(t) on M × [0,∞). By using (8.1) and
the estimate on the lower bound of scalar curvature R(ωi(t)) along the flow, we
have∫ 1

0

∫
M

|R(ωi(t)) − n|ωi(t)n ∧ dt ≤ 2n(e− 1)(1− βi)
∫
M

ωi(t)
n → 0. (8.22)

Let Sk (0 ≤ k ≤ 2n− 1) denote the subset of M∞ consisting of points for which
no tangent cone splits off a factor, Rk+1, isometrically. Clearly,

S0 ⊂ S1 ⊂ · · · ⊂ S2n−1.

It is proved by Cheeger-Colding that S2n−1 = ∅ and dimSk ≤ k. For any
x ∈M∞\S = S2n−2, every tangent cone is R2n, so there is a r > 0 satisfying:

Vol(Br(x, d∞)) ≥ (1− δ) cn,

where δ > 0 is chosen smaller than the ones in Proposition 8.2 and 8.4. Then by
using Proposition 8.4 and (8.22),, we know that Br/4(x, d∞) is also the Gromov-
Hausdorff limit of Br/4(xi, ωi(t)) for some xi ∈M and any t ∈ (0, δ]. Since the
curvature of ωi(t) is uniformly bounded by t−1, ωi(t) converge to a smooth
metric ω∞ which induces d∞ for any ∈ (0, δ] . Also by (8.22), ω∞ has to be
Kähler-Einstein. This shows that M∞\S is a smooth manifold on which d∞
coincides with a Kähler-Einstein metric ω∞. We will identify d∞ with ω∞.

Similarly, we can show that each tangent cone Cx is regular outside Sx: Let
x ∈M∞ and rj → 0 such that (M∞, r

−2
j ω∞, x) converge to (Cx, ωx, o). Choose

xi ∈ M such that limxi = x. For each j, we choose i(j) sufficiently large
such that (M, r−2

j ω̃i(j), xi(j)) converge to (Cx, ωx, o). Furthermore, if i = i(j) is
sufficiently large, we have∫

M

|Ric(r−2
j ω̃i(j)) − r−2

j ω̃i(j)|
(
r−2
j ω̃i(j)

)n
≤ r2−2n

j

∫
M

|Ric(ω̃i(j))− ω̃i(j)| ω̃ni(j) → 0. (8.23)

Clearly, for each j, r−2
j ωi(r

2
j t) is a solution of (8.17) with λ0 = r−2

j . Thus, as
above, we can use Proposition 8.2 and 8.4 to prove that Cx is smooth outside
Sx and ωx is Kähler and Ricci-flat.

Finally, using the smallness of the integral in (8.23) and the slicing argument
in [CCT02], one can prove that S2n−2 is empty, soM∞ is smooth outside a closed
subset of complex codimension at least 2. The theorem is proved.
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71



[Ti10] Tian, G.: Einstein metrics on Fano manifolds. ”Metric and Differential
Geomtry”, Proceeding of the 2008 conference celebrating J. Cheeger’s
65th birthday, edited by Dai et al., Progress in Mathematics, volume
239. Birkhäuser, 2012.
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